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Abstract 
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EXECUTIVE SUMMARY 

This document provides a general architectural framework for the creation of a computing 
continuum, spanning across multiple technological domains (e.g., cloud, edge, single 
devices, embedded devices) and multiple administrative boundaries (e.g., enterprise campus, 
telco operator, cloud provider). 

We include here an exhaustive analysis of the state-of-the-art with respect to the different 
topics covered by this project (e.g., single node architecture, computing continuum, security, 
energy), spanning across both research results and suitable technological tools. This would 
provide a common and solid ground for the FLUIDOS architecture, both in terms of research 
perspective and technological feasibility. 

The FLUIDOS architecture is presented mostly in a technology-agnostic fashion. All 
technology-dependent and implementation related details are addressed in deliverables 
provided by the following work-package: WP3 (FLUIDOS node), WP4 (Intent-based 
computing continuum), WP5 (Security) and WP6 (Energy and cost-effective infrastructure). 

  



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 5 of 133 

 

TABLE OF CONTENTS 

1 INTRODUCTION ............................................................................................................ 13 
1.1 The FLUIDOS Computing Continuum ...................................................................... 14 

1.1.1 Deployment transparency ......................................................................... 14 
1.1.2 Communication transparency .................................................................... 15 
1.1.3 Resource availability transparency ............................................................ 16 

1.2 Liquid Computing vs. Current Computing Continuum .............................................. 17 
1.3 The technological substrate: Kubernetes ................................................................. 17 

2 THE FLUIDOS VISION ................................................................................................... 19 
2.1 Main characteristics .................................................................................................. 19 

2.1.1 Intent-driven .............................................................................................. 19 
2.1.2 Decentralized architecture ......................................................................... 19 
2.1.3 Multi-ownership ......................................................................................... 20 
2.1.4 Fluid topology ............................................................................................ 20 

2.2 Deployment scenarios .............................................................................................. 21 
2.2.1 Elastic cluster ............................................................................................ 21 
2.2.2 Super cluster ............................................................................................. 21 
2.2.3 Brokering cluster ....................................................................................... 22 

2.3 The “Liquid Computing” pillars ................................................................................. 22 
2.3.1 Dynamic Discovery and Peering ............................................................... 23 
2.3.2 Hierarchical Resource Continuum ............................................................. 24 
2.3.3 Resource and Service Reflection .............................................................. 25 
2.3.4 Network Continuum ................................................................................... 25 
2.3.5 Storage and Data Continuum .................................................................... 26 

3 USE CASES AND SCENARIOS .................................................................................... 27 
3.1 Controlling a large number of (edge) servers/clusters ............................................. 27 

3.1.1 Central Control Plane ................................................................................ 27 
3.2 Connect applications/services hosted on different clusters ...................................... 28 

3.2.1 Cloud bursting ........................................................................................... 28 
3.2.2 Decentralized Federation .......................................................................... 29 
3.2.3 Multi-cluster high-availability and disaster recovery .................................. 29 
3.2.4 Migration of applications across clusters ................................................... 29 
3.2.5 Access to Data spaces .............................................................................. 30 
3.2.6 Secure Workload Container Independence .............................................. 30 
3.2.7 Intent-based Application Lifecycle Management ....................................... 30 

4 REQUIREMENTS ........................................................................................................... 31 
5 STATE OF THE ART ...................................................................................................... 32 

5.1 Computing continuum  ............................................................................................. 32 
5.1.1 KubeEdge .................................................................................................. 32 
5.1.2 Karmada .................................................................................................... 34 
5.1.3 Liqo ............................................................................................................ 35 



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 6 of 133 

 

5.1.4 Comparison summary ............................................................................... 36 
5.2 Security and Privacy ................................................................................................. 37 

5.2.1 Identity Management ................................................................................. 38 
5.2.2 Isolation and Trusted Computer ................................................................ 39 
5.2.3 Proactive and reactive container defense ................................................. 40 
5.2.4 Intent-based Security Orchestration .......................................................... 42 

5.3 Energy-aware computing continuum ........................................................................ 43 
5.3.1 Energy measurement tools ....................................................................... 44 

5.3.1.1 Intel RAPL ......................................................................................... 44 
5.3.1.2 ACPI interface ................................................................................... 45 
5.3.1.3 IPMI interface .................................................................................... 46 
5.3.1.4 KEPLER ............................................................................................ 47 

5.3.2 Carbon-aware scheduling ......................................................................... 49 
5.3.2.1 Google’s Carbon-aware Computing .................................................. 49 
5.3.2.2 Microsoft’s Carbon-aware Kubernetes .............................................. 50 

5.4 Intent description languages .................................................................................... 50 
5.5 Resource and Service brokering .............................................................................. 51 

5.5.1 Pro and cons ............................................................................................. 53 
6 ARCHITECTURE ............................................................................................................ 55 

6.1 Terminology .............................................................................................................. 55 
6.1.1 Kubernetes Node ...................................................................................... 55 
6.1.2 Kubernetes Cluster .................................................................................... 55 
6.1.3 FLUIDOS Node ......................................................................................... 56 
6.1.4 FLUIDOS Domain ..................................................................................... 56 
6.1.5 FLUIDOS SuperNode ................................................................................ 56 
6.1.6 FLUIDOS Cluster ...................................................................................... 56 

6.2 Interactions among FLUIDOS nodes ....................................................................... 57 
6.2.1 Horizontal interactions ............................................................................... 57 
6.2.2 Vertical Interactions ................................................................................... 58 

6.3 The FLUIDOS Software Stack ................................................................................. 59 
6.4 FLUIDOS node architecture ..................................................................................... 60 

6.4.1 Discovery Manager ................................................................................... 61 
6.4.2 Node Orchestrator ..................................................................................... 64 
6.4.3 Resource Acquisition Manager ................................................................. 66 
6.4.4 Virtual Fabric Manager .............................................................................. 71 
6.4.5 Privacy and Security Manager .................................................................. 72 
6.4.6 Telemetry Service ..................................................................................... 73 
6.4.7 Cost Manager ............................................................................................ 73 

6.5 FLUIDOS components status overview ................................................................... 74 
7 ADDITIONAL COMPONENTS: CATALOG & BROKER ............................................... 76 

7.1 Multi-tenancy and multi-cloud ................................................................................... 76 
7.2 User stories .............................................................................................................. 77 
7.3 Generic scenarios .................................................................................................... 78 



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 7 of 133 

 

7.3.1 B2C ........................................................................................................... 78 
7.3.1.1 Scenario 1 – Discovery ..................................................................... 78 
7.3.1.2 Scenario 2 - Metrics and certification ................................................ 78 
7.3.1.3 Scenario 3 - Data sovereignty ........................................................... 78 

7.3.2 B2B ............................................................................................................ 79 
7.3.2.1 Scenario 1 – Competitiveness ........................................................... 79 
7.3.2.2 Scenario 2 - Service offering extension ............................................. 79 
7.3.2.3 Scenario 3 - GDPR Data compliance ................................................ 79 

7.4 Real scenarios .......................................................................................................... 80 
7.4.1 Gaia-X ....................................................................................................... 80 
7.4.2 Structura-X ................................................................................................ 80 

7.5 Model and use-cases ............................................................................................... 80 
7.6 Catalog ..................................................................................................................... 81 
7.7 Orchestrator ............................................................................................................. 83 
7.8 Aggregator ................................................................................................................ 85 
7.9 Model comparison .................................................................................................... 86 

8 FLUIDOS AT THE EDGE ............................................................................................... 87 
8.1 IoT Edge Granularity ................................................................................................ 87 

8.1.1 Micro Edge ................................................................................................ 88 
8.1.2 Deep Edge ................................................................................................ 89 
8.1.3 Meta Edge ................................................................................................. 89 
8.1.4 Fog/MEC and Cloud Computing ............................................................... 89 

8.2 Use-case Scenarios for FLUIDOS at the Edge ........................................................ 90 
8.3 Technical Architecture .............................................................................................. 90 

9 CONCLUSIONS ............................................................................................................. 92 
10 REFERENCES ............................................................................................................... 93 
11 APPENDIX: HANDLING THE COMPUTING CONTINUUM ........................................ 100 

11.1 Most promising projects ................................................................................. 100 
11.1.1 KubeEdge ................................................................................................ 100 

11.1.1.1 Cloud side ..................................................................................... 101 
11.1.1.2 Edge side ...................................................................................... 102 
11.1.1.3 Summary ....................................................................................... 103 

11.1.2 Karmada .................................................................................................. 103 
11.1.2.1 Concepts ....................................................................................... 104 
11.1.2.2 Architecture ................................................................................... 105 
11.1.2.3 Cross-cloud multi-cluster multi-mode management ...................... 106 
11.1.2.4 Multi-policy multi-cluster scheduling .............................................. 107 
11.1.2.5 Cross-cluster failover of applications ............................................. 109 
11.1.2.6 Global uniform resource view ........................................................ 109 
11.1.2.7 Access control and resource quota ............................................... 111 
11.1.2.8 Cross-cluster network, storage and service fabric ........................ 111 

11.1.3 Liqo .......................................................................................................... 112 
11.1.3.1 Peering .......................................................................................... 112 



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 8 of 133 

 

11.1.3.2 Offloading ...................................................................................... 114 
11.1.3.3 Network fabric ............................................................................... 115 
11.1.3.4 Storage fabric ................................................................................ 115 

11.2 Research-oriented proposals ......................................................................... 116 
11.2.1 Cloudlets ................................................................................................. 116 
11.2.2 FLEDGE .................................................................................................. 118 
11.2.3 Decentralized Kubernetes Federation Control Plane .............................. 120 

11.3 Past projects .................................................................................................. 122 
11.3.1 KubeFed .................................................................................................. 122 
11.3.2 Admiralty ................................................................................................. 123 
11.3.3 KubeML ................................................................................................... 124 

11.4 Other solutions ............................................................................................... 124 
11.4.1 EVE-OS ................................................................................................... 125 
11.4.2 ThreeFold ................................................................................................ 125 
11.4.3 BalenaOS ................................................................................................ 126 
11.4.4 Aurae ....................................................................................................... 126 
11.4.5 Submariner .............................................................................................. 126 
11.4.6 Cilium Custer Mesh ................................................................................. 130 
11.4.7 VPN-based solutions ............................................................................... 131 
11.4.8 Rancher Fleet .......................................................................................... 131 
11.4.9 Open Cluster Management ..................................................................... 132 

 

 

 

  



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 9 of 133 

 

LIST OF FIGURES 

Figure 1. Computing continuum: traditional approach vs. FLUIDOS (for deploying apps). ........... 15 
Figure 2. Three main deployment scenarios for Liquid computing. ............................................... 21 
Figure 3. KubeEdge architecture. .................................................................................................. 33 
Figure 4. Karmada overview. ........................................................................................................ 34 
Figure 5. Different power domains in RAPL. ................................................................................. 45 
Figure 6. Kepler: overview of the main workflow. .......................................................................... 47 
Figure 7. Screenshot for Kepler metrics. ....................................................................................... 48 
Figure 8. Demonstration of cluster load shaping by a VCC. ......................................................... 50 
Figure 9. Horizontal and vertical interactions among FLUIDOS nodes. ........................................ 57 
Figure 10. Horizontal and vertical interactions in FLUIDOS. ......................................................... 58 
Figure 11. The FLUIDOS software stack. ..................................................................................... 59 
Figure 12. FLUIDOS logical architecture (see Appendix for full-size representation). .................. 61 
Figure 13. FLUIDOS discovery process. ....................................................................................... 63 
Figure 14. FLUIDOS discovery workflow. ..................................................................................... 64 
Figure 15. FLUIDOS service requests. ......................................................................................... 66 
Figure 16. FLUIDOS resource acquisition process. ...................................................................... 68 
Figure 17. FLUIDOS Service Request workflow (resources already available). ........................... 69 
Figure 18. FLUIDOS Service Request workflow (resources not yet available). ............................ 70 
Figure 19. FLUIDOS Resource Acquisition workflow. ................................................................... 71 
Figure 20. FLUIDOS component status overview. ........................................................................ 75 
Figure 21. Catalog example. ......................................................................................................... 82 
Figure 22. Excerpt from the Digital Ocean catalog. ....................................................................... 83 
Figure 23. Orchestrator example. .................................................................................................. 84 
Figure 24. Aggregator example. .................................................................................................... 85 
Figure 25. IoT Edge granularity. .................................................................................................... 88 
Figure 26. KubeEdge architecture. .............................................................................................. 101 
Figure 27. EdgeD functionalities. ................................................................................................ 103 
Figure 28. Karmada overview. .................................................................................................... 104 
Figure 29. Karmada main concepts. ........................................................................................... 105 
Figure 30. Karmada architecture. ................................................................................................ 106 
Figure 31. Karmada cross-cloud multi-mode management. ....................................................... 107 
Figure 32. Karmada multi-policy multi-cluster scheduling. .......................................................... 108 
Figure 33. Karmada multi-policy multi-cluster re-scheduling. ...................................................... 108 
Figure 34. Karmada cross-cluster failover of applications. .......................................................... 109 
Figure 35. Access and operations via Karmada API server. ....................................................... 110 
Figure 36. Checking and searching for cluster resources via Karmada API server. ................... 110 
Figure 37. Karmada unified authentication. ................................................................................. 111 
Figure 38. Defining global resource quota in Karmada. .............................................................. 111 
Figure 39. Service and network fabric with Karmada. ................................................................. 112 
Figure 40. Out-of-band control plane in Liqo. .............................................................................. 113 
Figure 41. In-band control plane in Liqo. ..................................................................................... 114 
Figure 42. Liqo network fabric. .................................................................................................... 115 



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 10 of 133 

 

Figure 43. Cloudnet overview. ..................................................................................................... 117 
Figure 44. Cloudlets and agents. ................................................................................................ 117 
Figure 45. FLEDGE overview. ..................................................................................................... 118 
Figure 46. FLEDGE VPN. ........................................................................................................... 119 
Figure 47. FLEDGE virtual kubelet. ............................................................................................. 120 
Figure 48. Decentralized Kubernetes federation control plane: proposed architecture. ............. 121 
Figure 49. Decentralized Kubernetes federation control plane: resource redistribution. ............. 121 
Figure 50. KubeFed overview. .................................................................................................... 122 
Figure 51. Cluster connections in Admiralty. ............................................................................... 124 
Figure 52. Possible deployment scenario for Admiralty: central control plane.Error! Bookmark not 

defined. 
Figure 53. Possible deployment scenario for Admiralty: cloud bursting.Error! Bookmark not 

defined. 
Figure 54. Possible deployment scenario for Admiralty: decentralized federation.Error! Bookmark 

not defined. 
Figure 55. BalenaOS: overview. .................................................................................................. 126 
Figure 56. Submariner: overall architecture. ............................................................................... 127 
Figure 57. Submariner: basic lighthouse architecture. ................................................................ 128 
Figure 58. Submariner: overlapping IP addressing spaces (CIDR). ........................................... 129 
Figure 59. Submariner: global private network. ........................................................................... 129 
Figure 60. Submariner: communications with Globalnet. ............................................................ 130 
Figure 61. Rancher Fleet: architecture. ....................................................................................... 132 
Figure 62. Open Cluster Management: architecture. .................................................................. 133 
 

 

 

 

 

  

  



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 11 of 133 

 

LIST OF TABLES 

Table 1. Most promising projects to build the computing continuum. ............................................ 36 
Table 2. Use cases in FLUIDOS. .................................................................................................. 27 
Table 3. Comparing different brokering models. ........................................................................... 86 

 

  



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 12 of 133 

 

ABBREVIATIONS 

IP  Internet Protocol 

TCP  Transmission Control Protocol 

 

  



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 13 of 133 

 

1 INTRODUCTION 

In the last years, containerization has increasingly gained popularity as a lightweight solution 
to package applications in an interoperable format [1], independently of the target 
infrastructure. This uniform substratum paved the way for the cloud native revolution, with 
novel applications shifting their focus from single servers to entire data centers, and where 
dedicated orchestrators manage the lifecycle of microservice applications. As of today, 
Kubernetes emerged as the de-facto open-source framework for container orchestration, 
bridging the semantic gaps across competing infrastructure providers [2]. With the rise of the 
edge and fog computing paradigms [3][4][5] as solutions accounting for geographical 
closeness, reduced latency and improved privacy, the same approaches are being 
progressively extended towards smaller data centers at the network border, benefiting from 
uniform primitives to foster service agility. 

Despite the emergence of common interfaces for applications orchestration being key 
towards a real edge to cloud continuum [6][7], industry-standard approaches handle each 
infrastructure as a multitude of (connected) isolated silos instead of a unique virtual space. 
This leads to a sub-optimal fragmented view of the overall available resources, preventing 
the seamless deployment of fully distributed applications. Indeed, edge data centers cannot 
depend on a single centralized control plane, for resiliency (i.e., preventing failure 
propagation in case of network partitioning) and performance reasons, as orchestration 
platforms typically suffer if nodes are geographically spread over high-latency WANs 
[8][9][10]. Besides the edge landscape, resource fragmentation also affects larger data 
centers, with many companies increasingly witnessing the cluster sprawl phenomenon 
[11][12]. This trend finds its roots in scalability concerns, in the hybrid-cloud (i.e., the 
combination of on-premises and public cloud) and multi-cloud approaches [13], which aim for 
high availability, geographical distribution and cost-effectiveness, while granting access to the 
breadth of capabilities offered by competing cloud providers. Additionally, non-technical 
requirements such as law regulations, mergers and acquisitions, physical isolation policies and 
separation of concerns contribute to the proliferation of clusters. 

Fragmentation also hinders the potential dynamism in the workload placement [14][15][16], 
forcing each application to be assigned upfront to a specific infrastructure. No resource 
compensation is ever possible, hence preventing jobs from transparently moving from an 
overloaded cluster, e.g., due to unexpected spikes of requests, to another one, underused 
and potentially offering better performance. At the same time, the deployment of complex 
applications composed of multiple microservices, each one with specific requirements (e.g., 
low latency, high computational power, access to specialized hardware, ...), as well as the 
enforcement of proper geographical distribution and high-availability policies, requires the 
interaction with different infrastructures. However, this prevents relying on the single point of 
control, which would coordinate the deployment of arbitrarily complex applications across 
the entire resource continuum, no matter how many nodes and clusters it is composed of. 



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 14 of 133 

 

Accounting for these demands, this project advocates the opportunity for a novel architectural 
paradigm, called liquid computing1 in the seminar paper [82], which builds upon and extends 
the well-established cloud and edge computing approaches towards an endless computing 
continuum. Overall, the resulting computing domain abstracts away the specificity of each 
cluster, presenting to the final users, either actively participating as actors or simply renting 
off-the-shelf services, a unique and borderless pool of available resources, the so-called big 
cluster. Thanks to this abstraction, applications are no longer constrained in a specific silo, but 
free to fly in the entire infrastructure, selecting the most appropriate location depending on 
its requirements (e.g., a user facing service may be replicated at the edge to account for low 
latency, while another might be constrained to European infrastructures to comply with 
GDPR), and the available resources, while retaining full compatibility (hence, models, tools, 
and commands) with vanilla Kubernetes. 

1.1 THE FLUIDOS COMPUTING CONTINUUM 

At a first sight, the computing continuum seems to be a reality today, without the necessity 
of big investments in terms of technology and research. For instance, many software 
applications already rely on multiple components which are installed and operated in different 
locations (e.g., data gathering at the far edge, data aggregation at the telco edge, deep data 
processing in the cloud), hence apparently already implementing a computing continuum. 

This section highlights how the FLUIDOS approach to Computing Continuum (a.k.a., liquid 
computing) has three distinctive characteristics that are not matched by existing approaches. 

1.1.1 Deployment transparency 

When an application composed of multiple microservices such as in of Figure 1 is deployed, 
each component must be explicitly configured to land on a specific target, e.g., edge 
datacenter vs. cloud. The location of each component is therefore fixed and decided a-priori; 
no modifications are allowed with respect to the location of each different component, unless 
starting a new re-deployment phase. Consequently, any possible dynamic optimization that 
could be carried out at run-time is more complex, as it requires the presence of an overarching 
orchestrator that re-deploys all the required components in the new optimal location, which 
is something that does not exist with the current technology.  

 
1 This term was first coined in 2014 by InfoWorld (G. Gruman, “Welcome to the next tech revolution: Liquid 
computing,” https://www.infoworld.com/article/2608440/article.html, Jul. 2014) as a synonym of pervasive 
computing, i.e., the capability of keep working on a given task across multiple devices such as PCs and tablets. 
This paper refers to a broader concept, which encompasses the creation of a resource continuum composed of 
cloud and edge infrastructures, on-premises clusters, as well as, in its widest form, single end-user and IoT devices. 
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Instead, the FLUIDOS intent-based interface guarantees that each micro-service is started in 
the best location and provides also dynamic optimizations if required. Hence, DevOps have 
simplified operations with FLUIDOS, as all services leverage a single point of deployment and 
control, while the FLUIDOS “magic” will start the above services in the most appropriate 
location given the service requirements and the infrastructure status. 

 

Figure 1. Computing continuum: deploying apps with traditional approach vs. FLUIDOS. 

1.1.2 Communication transparency 

The communication between different microservices is different whether they belong to the 
same communication space (e.g., the same Kubernetes cluster) or not. For instance, by default 
all the communications inside a cluster are allowed, while all the communications from 
external components are forbidden. Furthermore, a service that accepts communications from 
inside the cluster requires primitives (e.g., the Kubernetes ClusterIP service) that are different 
from the ones used to accept data from outside the cluster (e.g., the Kubernetes NodePort 
or LoadBalancer services). Therefore, services must be explicitly configured to talk to each 
other based on their respective location, hence further complicating the actions required to 
carry out a possible re-deployment of the components mentioned above. It is worth 
mentioning that some technologies can partially overcome this problem, e.g., when the 
communication among micro-services occurs through message brokers (e.g., technologies 
based on publish/subscribe primitives, such as Kafka). However, this requires all the micro-
services to rely on the above communication primitives, which is not always possible because 
of the intrinsic characteristics of the pub/sub technology (e.g., cannot guarantee reduced 
latency), or because applications do not use this technology (e.g., they are based on HTTP or 
gRPC protocols). 

The FLUIDOS approach to the computing continuum is visible in the right part of the figure 
below: a virtual cluster spanning across multiple real clusters is envisioned, and applications 
are operating on the above virtual space. With FLUIDOS, all communications between micro-
services are mediated by the FLUIDOS virtual network fabric, which guarantees seamless 
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communications independently from the location of each microservice. Hence, the 
communication between two services belonging to the same virtual space happens as they 
were inside the same cluster, hence avoiding the necessity of complex and error-prone 
configurations that must capture the fact that services that in the same cluster, or deployed 
in two different clusters. 

 

Figure 2. Computing continuum: service-to-service communications with traditional approach vs. 
FLUIDOS. 

1.1.3 Resource availability transparency 

With the current technology, each microservice can use only the resources that are inside its 
own cluster. This statement holds for both normal operations (e.g., when the service is 
started), and when an update (e.g., automatic scaling) is requested. This behavior prevents a 
service from using available resources that located in other parts of the continuum, hence 
possibly ending up in a service disruption (e.g., due to a lack of resources) even in presence 
of available resource, which cannot be leveraged because they are located in another part of 
the continuum. 

This problem is not very important in cloud datacenters, where it is very unlikely to run into a 
lack of resources. Even in the case of small clusters obtained by acquiring only a small subset 
of the datacenter resources, the problem is irrelevant thanks to the capability to 
(automatically) resize the cluster, e.g., by adding/removing worker nodes to the given cluster. 
Instead, this problem is more important when considering a small pool of resources available 
at the edge, in which usually a few servers are available. The capability to acquire new physical 
resources, when needed, needs to be achieved by leveraging other worker nodes possibly 
available in the closest vicinity. 

FLUIDOS overcomes the above limitation by enabling the creation of a virtual computing 
space spanning across multiple physical domains, hence enabling a service (which has been 
started in the virtual space) to leverage all the resources belonging to the same virtual 
domain, independently from their physical location. Hence, in FLUIDOS a service can 
seamlessly scale based upon the availability of resources within the entire virtual infrastructure, 
e.g., ending up having one instance running in the telco edge, and another in the cloud 
datacenter, hence blurring the current rigid cluster boundaries. 
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Figure 3. Computing continuum: available resources with traditional approach vs. FLUIDOS. 

1.2 LIQUID COMPUTING VS. CURRENT COMPUTING 

CONTINUUM 

Given the above consideration, the computing continuum envisioned by FLUIDOS (a.k.a., 
Liquid Computing) is not simply the capability to deploy services in multiple sites datacenter 
clusters or devices. It defines a virtual space, spanning across multiple technological domains 
(e.g., one cluster on-prem, another running on the cloud; or one single device, and a cluster 
running on edge servers; etc.) and, potentially, across multiple administrative boundaries 
(e.g., two mobile edge operators sharing their resources), in which the three properties 
presented above hold: Deployment transparency, Communication transparency, and 
Resource availability transparency, with the advantages presented above. 

Obviously, the creation and the maintenance of the liquid continuum has a cost, e.g., in terms 
of computing (additional software services running on the nodes) and communication 
overhead (exchanging messages to synchronize data in the different entities). FLUIDOS has 
the ambition to determine the best trade-off between the advantages brought by the liquid 
computing (e.g., in terms of better utilization of available resources) and the corresponding 
costs, which could be used to determine where to put the boundaries of the computing 
continuum, e.g., at the edge of the infrastructure. 

1.3 THE TECHNOLOGICAL SUBSTRATE: KUBERNETES 

FLUIDOS starts with a strong (and potentially controversial) assumption: the chosen reference 
technology is Kubernetes. This stems from several considerations: 

• Cloud-native: Kubernetes is considered the most promising platform to provide cloud-
native services, which provide unprecedented agility and efficiency compared to the 
previous world of VMs. 

• Scalability: Kubernetes is designed to scale applications across many servers in a 
cluster, allowing them to handle large traffic loads without downtime. 
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• Portability: Kubernetes is platform-agnostic, meaning it can be used on-premises or in 
the cloud, and supports multiple cloud providers, such as AWS, Google Cloud 
Platform, and Azure. 

• Large-to-Small scale support: multiple flavors of Kubernetes exist, with support for 
both large deployments (e.g., cloud datacenter), and small-scale deployments (e.g., 
even resource-constrained individual devices), hence becoming the natural candidate 
to build the META-OS concept upon. 

• Flexibility: Kubernetes provides a range of features to manage containerized 
applications, such as scaling, deployment, updates, and monitoring. It also supports 
various container runtimes, including Docker and CRI-O. 

• Resource Optimization: Kubernetes can optimize resource utilization by automatically 
allocating containers based on available resources and workload demands. 

• Community Support: Kubernetes has a large and active open-source community that 
contributes to its development and maintains a vast ecosystem of add-ons and tools. 

Nevertheless, although the FLUIDOS project assumes Kubernetes at its technological 
foundation, the overall architecture and most of the choices and proof-of-concept 
components developed in this project aim at having a more general breadth, hence 
potentially enabling their reuse with other technological substrates. 
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2 THE FLUIDOS VISION 

We envision liquid computing as a continuum of resources and services allowing the seamless 
and efficient deployment of applications, independently of the underlying infrastructure. We 
present here the main characteristics of liquid computing, followed by the most significant 
deployment scenarios. 

2.1 MAIN CHARACTERISTICS 

We believe this paradigm shall be composed of the following four distinguishing 
characteristics. 

2.1.1 Intent-driven 

A consumer can assign to each workload the desired execution constraints through high-level 
policies, without knowing about the infrastructural details. Overall, liquid computing brings 
the cattle service model [17] to a greater scale. Like servers in a data center, with no one 
caring about where each task is executed, if requirements are fulfilled, this paradigm blurs the 
cluster borders so that users are relieved from selecting a specific infrastructure for their 
applications. Yet, different clusters are associated with different properties (e.g., in terms of 
geographical location and security characteristics) and, indeed, this is one of the main driving 
reasons behind cluster sprawling. Thus, it is of utmost importance the adoption of an intent-
driven approach, allowing final users to enrich each workload with a set of high-level policies 
to express the associated constraints (e.g., geographical locality and spreading, costs, 
capabilities, ...); automated schedulers shall select the best execution place across the entire 
border-less infrastructure, depending on the available resources and enforcing in concert the 
user-specified policies. Yet, we deem at the same time the resource continuum abstraction to 
enable more contextualized scheduling decisions (given the knowledge about the entire 
infrastructure), allowing for further optimizations and better scalability compared to the siloed 
approach. 

2.1.2 Decentralized architecture 

The resource continuum stems from a peer-to-peer approach, with no central point of control 
and management entities, as well as no intrinsically privileged members. Following a 
decentralized and peer-based model like the Internet, the liquid computing approach fosters 
the coexistence of multiple actors, including larger cloud providers, smaller, territory-linked 
enterprises, and even small office/homeowners. Indeed, each entity can autonomously and 
dynamically decide who to peer with (hence, share resources), similarly to the concept of 
Autonomous Systems in the Internet inter-domain routing. A dynamic discovery and peering 
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protocol is in charge of the automatic identification of available peers and the negotiation of 
peering contracts based on the demands and offers of each actor, along with their specific 
constraints; optionally, the above operations could also be delegated to an intermediate 
dedicated entity such as a broker. No sensitive information disclosure is mandated (e.g., 
infrastructural setup), with the entire process possibly involving only the request for a certain 
amount of abstract resources (e.g., CPU, memory, ...) and the offer of available ones, together 
with the associated cost. Besides peering establishment, decentralization also concerns the 
preserved ability of each cluster to evolve independently, thanks to the local orchestration 
logic, and the support for the creation of arbitrary topologies, with different points of entry 
for the deployment of different workloads. 

2.1.3 Multi-ownership 

Each actor maintains full control of his own infrastructure while deciding at any time how many 
resources and services to share and with whom. Although single clusters are expected to be 
under the control of a single entity, the entire resource ocean would likely span across 
different administrative domains. Once a new peering is established, the control plane of the 
target infrastructure is in charge of configuring the appropriate isolation primitives (e.g., 
resource quota, network and security policies, ...), based on the underlying orchestration 
capabilities, to enforce the shared resource slice and prevent noisy neighbors' phenomena. 
Specifically, we foresee a shared security responsibility model, with the provider responsible 
for the creation of well-defined sandboxes and the possible provisioning of additional security 
mechanisms (e.g., secure storage) negotiated at peering time. Requesters, on the other hand, 
are expected to take measures to fortify their applications (similarly to public cloud 
computing) and to configure for each sensitive component the appropriate policies to ensure 
it is scheduled on security-compliant infrastructures only (e.g., private data is processed 
locally). 

2.1.4 Fluid topology 

Members can join and leave the virtual continuum at any time, independently from their 
infrastructure size, from enterprise-grade data centers to IoT and personal devices. 
Generalizing traditional federation approaches, liquid computing aims at supporting highly 
dynamic scenarios, with frequent and unexpected (or, in other scenarios, explicitly desired) 
connections and disconnections. Besides spanning across public and private data centers, as 
well as edge clusters, the resource continuum encompasses also single devices. This would 
include IoT, industrial and domestic scenarios, all characterized by a multitude of independent 
appliances typically dedicated to specific tasks (e.g., machine tools control, home automation, 
monitoring, ...), which could greatly benefit from this paradigm, transparently leveraging the 
shared resources to offload computations and extend their capabilities [15]. 
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2.2 DEPLOYMENT SCENARIOS 

We foresee three high-level deployment scenarios to be mostly enabled and fostered by 
liquid computing (Figure 4). 

 

Figure 4. Three main deployment scenarios for Liquid computing. 

2.2.1 Elastic cluster 

The liquid computing paradigm reduces the fragmentation of scattered clusters thanks to the 
possibility of transparently leveraging the resources available in other locations, which enables 
it to balance and absorb load spikes (cloud bursting). This applies to edge-computing 
scenarios, whose pervasiveness is typically achieved at the expense of computational capacity 
but is visible also in more traditional cloud contexts where multiple clusters are active. For 
example, elastic clusters can be used to support multi-cloud strategies (no single vendor lock-
in) and geographically distributed multi-cluster deployments (e.g., due to cost optimization, 
latency, redundancy, or legislative concerns). Resource sharing can involve both on-premise 
and public data centers, hence deploying latency-sensitive applications close to the final 
users, while benefiting from the virtually infinite computational capacity featured by larger 
infrastructures for resource-intensive tasks. Thanks to the decentralized approach and the 
support for peering contracts, resource sharing can occur also when clusters are under the 
control of different organizations, i.e., they belong to different administrative domains. 

2.2.2 Super cluster 

We are currently witnessing scenarios in which a company owns hundreds, or even thousands, 
of small clusters, often located at the edge of the network, such as a large telecom operator. 
In this context, the liquid computing paradigm enables a higher-level, super cluster 
abstraction, representing the single point of entry that can transparently deploy and control 
applications hosted by the entire infrastructure. Although apparently centralized, each level-
2 cluster maintains its own local orchestration logic, hence being resilient to network outages 
and preventing possible synchronization issues arising with relatively high latency WAN links 
[8][9][10]. In addition, thanks to the super cluster, the administrative burden is greatly reduced, 
enabling a borderless orchestration that geographically distributes and controls the tasks from 
a single point of entry, without the necessity of an explicit interaction with the underlying 
clusters. This scenario facilitates the automatic migration of applications from one cluster to 
another, which helps when dealing with disaster recovery, infrastructure interventions, scaling, 
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or placement optimization. In addition, it greatly simplifies the replication of jobs across 
clusters (hence management, monitoring and troubleshooting) as it leverages existing 
primitives that operate on nodes of the “super cluster”; for example, an operator can easily 
replicate the same service on a subset of its edge clusters to serve all the end users present 
in their close vicinity. Finally, this approach can be combined with the elastic cluster for 
increased dynamism, thus benefiting from the single point of entry for workloads replication, 
while enabling at the same time the offloading of “bursty” workloads from the edge to the 
cloud. 

2.2.3 Brokering cluster 

Complex applications require complex infrastructural setups, accounting for both resiliency 
and performance. While larger cloud providers could theoretically offer a sufficiently wide 
catalog of services to satisfy most demands, relying on a single vendor increases lock-in and 
potentially leads to cost inefficiencies. In this context, we believe that liquid computing could 
foster the creation of new Resource and Service Exchange Points (RXPs), with third party 
entities behaving as brokers between consumers and providers. Consumers would then only 
need to peer (both technologically and contractually) with a single RXP to immediately benefit 
from the entire set of resources (cloud and edge data centers, ...) and ready-to-use services 
therein offered. This would reduce the complexity and the operational costs, especially for 
smaller companies, lacking the bargaining power of larger enterprises. Resource providers, at 
the same time, would be encouraged to participate, to easily reach a wider turnout of 
interested customers. Additionally, even small actors, such as the ones operating at the edge 
of the network, would be enabled to participate in the edge-cloud market, possibly in a fair 
competition with far larger giants that may not have enough resources to serve a given 
geographical area, in a way that looks like the energy market in which millions of tiny 
producers are aggregated by larger buyers. 

2.3 THE “LIQUID COMPUTING” PILLARS 

This section presents the main technical building blocks required to materialize the liquid 
computing vision, assuming Kubernetes as the orchestration platform leveraged by the 
underlying clusters. In fact, in our opinion, Kubernetes represents a key enabler for liquid 
computing, thanks to its capillary diffusion in data centers of any size [18], as well as the 
support for single devices and IoT computing by means of lightweight distributions, such as 
k3s [19]. To this end, the recent Microsoft’s backed Akri project [20] goes even further, 
introducing an abstraction layer to dynamically interconnect to this platform the variety of 
sensors, controllers, and MCU class devices typically present at the very edge of the network. 
At the same time, Kubernetes can be easily extended through both custom APIs and logic, 
allowing to transparently integrate liquid-computing related aspects, as well as to semantically 
enrich the ecosystem and introduce new services that may be shared with peered clusters. 
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Hence, Kubernetes can become the underlying platform the resource continuum is built upon, 
and it is conceptually similar to an overarching operating system. Still, the key concepts are 
more general and can be applied with no difference to other orchestrators, such as 
OpenStack, or even to a mix thereof. 

2.3.1 Dynamic Discovery and Peering 

The first key enabler is the discovery and peering function. It fosters the decentralized 
governance approach typical of a peer-to-peer architecture, preventing the need for central 
management entities and full administrative control over the entire infrastructure. 
Additionally, it is responsible for the liquid computing dynamism, allowing for new peering 
relationships to be established and revoked at any time, compared to the manual 
coordination required by static federation approaches. In this context, we define peering a 
unidirectional resource and service consumption relationship, with one party (i.e., the 
consumer) granted the capability to offload tasks and/or consume services in a remote cluster 
(i.e., the provider), but not vice versa. This allows for maximum flexibility in asymmetric setups, 
while transparently supporting bidirectional peerings through their combination. 

Overall, this module deals with four main tasks. (i) Discovery, to identify candidate clusters to 
peer with, including large enterprise domains, as well as possibly local independent 
appliances (e.g., IoT devices). (ii) Authentication: given the list of feasible candidates obtained 
during the previous step, optionally filtered through user-configured criteria, it is responsible 
for the establishment of a secure communication channel with each selected counterpart. Still, 
resource offloading is not yet possible at this point, being the granted authorizations related 
to peering establishment steps only. (iii) Resource negotiation, involving the exchange of 
request and offer messages to identify the shortlist of clusters selected for resource 
offloading. The entire process is policy-driven, with decision modules local to each cluster 
determining at each step whether to proceed with the negotiation or to abort the process. As 
a representative example, an offering cluster might implement complex business logic to 
determine the appropriate prices based on current demands and available resources, 
accounting for resource brokering and reselling scenarios. Consumers, on the other hand, 
may filter and rank the received offers by means of appropriate criteria, possibly including 
compliance with the request constraints, cost, additional attributes, past experience, and 
more. The negotiation process culminates with the mutual agreement between a consumer 
and a provider. To this end, we envisage the adoption of smart contracts [21] to formalize the 
exchange in terms of money and resources, especially in the case of inter-administrative 
domain peerings. (iv) Peering finalization: once resource negotiation is completed, the 
peering relationship needs to be finalized, leading to the exchange of the preparatory 
parameters required for subsequent computation offloading, as well as the setup of isolation 
mechanisms and the granting of the suitable permissions in the target cluster. 
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2.3.2 Hierarchical Resource Continuum 

Once peering relationships have been established towards one or more targets, the local 
cluster gains logical access to remote resource slices. Yet, these need to be properly exposed 
for application offloading through a continuum abstraction, while respecting the limited 
knowledge propagation and the multi-ownership constraints. Moreover, we consider API 
transparency to be of utmost importance to foster its widespread adoption, thanks to the 
introduction of no disruption in well-established deployment and administration practices, as 
well as the immediate support for existing management solutions. Being traditional clusters 
composed of multiple nodes, each one mapping to a physical or virtual server, we propose 
to represent peered clusters through local, virtual, big nodes. Local, as attached to the 
consuming cluster; virtual, since they abstract a set of remote resources possibly unrelated 
from the underlying hardware; and big, being potentially much larger than classical nodes (in 
terms of available capabilities), as backed by an entire data center slice. The node concept 
perfectly complies with the requirement of sharing limited information, hence abstracting 
peered clusters only in terms of the aggregated resources currently being shared, with no 
additional details regarding its actual internal configuration. At the same time, it leads to 
overall better scalability, given the reduced amount of data synced among different clusters. 
This approach opens up for two possible cluster models. First, extended clusters, 
encompassing a combination of traditional physical Kubernetes nodes (i.e., workers), and 
virtual ones. This could be suitable for the resource optimization and RXP consumer use-cases, 
to allow borrowing external computational capacity to overcome local limitations. Second, 
virtual clusters, characterized by the absence of local workers. Combining only virtual nodes, 
they provide a single point of control abstraction to simplify the deployment of applications 
on user-defined slices of the underlying infrastructure. Moreover, they represent a key enabler 
for resource brokering, aggregating the resources offered by multiple providers (each one 
mapped to a virtual node) for reselling. 

The virtual node abstraction leads the underlying orchestration platform (e.g., Kubernetes) to 
consider the above nodes as valid scheduling targets, hence allowing traditional workloads 
to be transparently assigned to remote clusters. No differences are perceived by the final 
users, who simply benefit from the larger number of available resources. This approach brings 
to a hierarchical representation of the resource continuum. 

When a new workload is deployed in the local cluster, the scheduler first selects the optimal 
node for its execution. Then, if the target is a virtual node, the workload is remapped to the 
corresponding remote cluster, where a second scheduling round is started to identify the 
physical server where it will be executed upon. While considering a two-layer scheduling in 
this example, the approach can easily generalize to multiple levels if needed, depending on 
the number of virtual node redirections. Hence, allowing scheduling decisions to occur at 
different abstraction layers, reducing the overall number of feasible candidates to consider at 
each step and potentially increasing the resulting accuracy. Once more, compliance with 
standard Kubernetes APIs enables vanilla schedulers to deal out-of-the-box with extended 
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clusters. However, custom scheduling logic might be appropriate in certain scenarios, 
allowing for further optimizations thanks to the knowledge about the semantics of the peering 
relationship (e.g., monetary costs, network characteristics, geographical distance, QoS). In 
both cases, end-users can easily enforce domain-specific constraints through Kubernetes 
standard high-level policies (i.e., selectors and affinities) to assign workloads to slices of nodes 
and ensure replicas spreading. Hence, sticking to an intent-driven approach, while requiring 
no modifications in standard application deployment workflows. 

2.3.3 Resource and Service Reflection 

Each virtual node is responsible for its allocated workloads, whose execution is delegated to 
the remote cluster. Hence, selected control plane information should be present both in the 
local cluster (required to fulfill the requirement of the virtual node abstraction) and in the 
remote cluster (enabling the remote-control plane to carry out its operations). This introduces 
the resource reflection concept: objects exist both in their native form (i.e., in the local cluster), 
and in their shadow form, remotely. Indeed, applications most likely require accessory artifacts 
for proper execution (e.g., configurations, authorization tokens, network endpoints, etc.), 
which then need to be reflected in the target cluster. The resource reflection logic enforces 
the transparent realignment between the two digital twins of the same artifact across the 
different domains, while ensuring the desired information opacity properties (i.e., omitting or 
masquerading data that should not be propagated) and resolving possible conflicts which 
may arise in the remote infrastructure (e.g., naming collisions, different underlying 
technologies, etc.). Overall, it shall support the propagation of both local modifications (e.g., 
the change in a user configuration) — outgoing reflection — and of remote status changes 
(e.g., an application is being restarted due to a crash), hence allowing for proper inspection 
— incoming reflection. Service endpoints represent one of the most important reflected 
information, enabling an application running on one cluster to be reachable (hence, 
consumable) from another cluster. This may require the close coordination of the network 
fabric to disambiguate and transparently translate possible overlapped network addresses 
used in the communication flows. 

The clever reflection of the required information is the key to achieve objectives such as 
robustness, enabling clusters to evolve also in case of network disconnections, and scalability, 
reducing the amount of synced data. 

2.3.4 Network Continuum 

According to the virtual nodes approach, different components of the same application may 
be spread across multiple clusters. Still, the resource continuum, alone, is not sufficient to 
ensure their correct execution, as the various microservices most likely need to interact among 
each other. Orchestration platforms typically implement internal communication by means of 
private IP addresses, resorting to public ones only for user-facing services. Hence, they are 
unsuitable for direct (pod-to-pod) cross-cluster interactions and require the introduction of an 



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 26 of 133 

 

appropriate network fabric responsible for the transparent communication between 
microservices, no matter where they are executed. Accounting for the decentralized and 
dynamic approach fostered by liquid computing, with peers possibly joining and leaving at 
any time, the network fabric cannot rely on ahead-of-time knowledge for its establishment. 
Indeed, it shall only require the cooperation between the two involved clusters, which 
negotiate the configuration parameters necessary to set up (i) the secured communication 
channel and (ii) the proper mechanisms to guarantee any-to-any communication across the 
entire virtual cluster. Being the interconnecting clusters potentially under the control of 
different administrative domains, it is likely conflicts may arise, e.g., in terms of overlapping 
IP addresses or underlying networking solutions. The network fabric is expected to 
transparently handle all these issues, while virtually extending the local cluster network to the 
entire resource continuum, presenting a unique border-less addressing space. Supposing a 
central cluster C peered with N others, we foresee two main network topologies for data 
plane communications. First, a hub and spoke topology, with n direct interconnections 
between C and all the leaves. Conceptually simple, this solution requires all traffic between 
applications residing on peripheral clusters to flow through the central hub, potentially 
resulting in communication inefficiencies. Still, it may be appropriate when applications do 
not span across multiple remote clusters (e.g., the same application is replicated in multiple 
edge clusters), in case either the communication pattern or the underlying network match the 
star topology, as well as when traffic policies should be enforced from a single point of control. 
Second, an opportunistic mesh topology, providing full connectivity between all clusters 
hosting applications potentially communicating between one another, to avoid traffic 
tromboning. It is worth noting that peripheral clusters may in turn play the role of central 
clusters for different peering sessions, hence leading to completely dynamic and independent 
topologies, and potentially overlapped virtual clusters. 

2.3.5 Storage and Data Continuum 

When an application is spread across multiple clusters, stateful workloads require the access 
to persistent storage locations, which implies a data continuum across the virtual cluster. To 
this end, we foster the data gravity approach borrowed from well-established practice in the 
Big Data world [22]. According to it, data attracts the associated workloads (i.e., introducing 
additional placement constraints) rather than vice versa, to ensure the best performance in 
terms of reduced network traffic and latency, as well as to enforce storage locality, which 
represents a strong requirement to comply with law regulations. This paradigm allows also for 
the extension of traditional in-cluster stateful workloads replication mechanisms (e.g., 
databases) across the entire resource continuum, transparently achieving increased disaster 
recovery support. Information replication and synchronization might be further supported if 
more dynamism is desired, although requiring the exchange of data between potentially 
distant storage pools; hence, this is mostly suitable only in case of limited amounts of data. 
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3 USE CASES AND SCENARIOS 

This section describes a set of technical user stories that can take advantage of the computing 
continuum, which may go beyond the three use cases included in the FLUIDOS project (Table 
1). They have been evaluated for suitability for each use case by the use case responsible 
within FLUIDOS. These stories are essentially technical-needs descriptions of the use cases 
and need to be supported by the technical work package outputs. When provided, use cases 
will then implement and deploy them for experimentation and evaluation.  

Throughout the descriptions a generic actor is used, named “enterprise”. This represents the 
different stakeholders of each use case and is the archetype actor. 

The current set of use cases are as follows: 

Table 1. Official use cases, with pilots, in FLUIDOS. 

Name Owner 

Smart Viticulture Terraview 

Energy RSE 

Robotics Robotnik 

They all have the following needs from FLUIDOS. These needs are also aligned to the new 
technical developments of FLUIDOS. 

3.1 CONTROLLING A LARGE NUMBER OF (EDGE) 
SERVERS/CLUSTERS 

An enterprise owns a large set of edge servers, either completely independent or partially co-
located together, which would like to control applications’ life cycles in an easy manner. 
Administrators want to replicate the same service across all/a subset of the locations. Internet 
connection reliability might be an issue? Likely not in case of structured solutions (e.g., those 
managed by a telco), more probable with wireless connections (yet, these are probably 
associated with smaller/independent devices, which might not run Kubernetes in the first 
place). 

3.1.1 Central Control Plane 

One of the most common topologies is the Central Control Plane, where a central cluster, 
referred to as the management cluster, is responsible for multiple workload clusters. Although 
the management cluster is not critical, as existing pods and services continue to run even if 
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the management cluster fails, updating applications during that time requires connecting to 
individual clusters. Therefore, it is recommended to have a highly available management 
cluster and a disaster recovery strategy. 

 

Figure 5. Possible deployment scenario: central control plane. 

3.2 CONNECT APPLICATIONS/SERVICES HOSTED ON DIFFERENT 

CLUSTERS 

An enterprise owns multiple clusters, each hosting a given set of applications, e.g., for 
separation of concerns, due to historical/organizational reasons, to benefit from the managed 
services offered by the cloud provider. Yet, some applications might need to interact with 
others hosted on different clusters to provide their services, or access data (i.e., database) 
residing on other infrastructures. In a more general case, clusters might be controlled by 
different administrators/entities. 

3.2.1 Cloud bursting 

Cloud Bursting is a typical case in which a primary on-prem cluster with fixed resources targets 
both itself and a secondary cloud-based cluster with elastic resources. This use case is 
particularly interesting as long as on-prem resources are concerned, as those clusters are 
typically fixed and difficult to extend, hence need to find newer resources elsewhere. Instead, 
cloud-based clusters rely on a potential huge amount of resources, hence can leverage 
autoscaling mechanisms to acquire new resources when needed, e.g., to sustain an 
unexpected burst of workloads. 
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Figure 6. Possible deployment scenario: cloud bursting. 

3.2.2 Decentralized Federation 

Decentralized Federation enables organizations in different administrative domains to 
connect their control planes, facilitating the sharing of resources or delegation of operations 
without relying on a central cluster owned by a single organization. This topology is 
particularly useful for academic research platforms or vendor-managed deployments. 

 

Figure 7. Possible deployment scenario: decentralized federation. 

3.2.3 Multi-cluster high-availability and disaster recovery 

An enterprise needs to deliver mission/safety critical services, which need cross-cluster high-
availability and disaster recovery solutions to be in place. Thus, allowing to seamlessly migrate 
an entire application from an infrastructure to another in case of major outages. The most 
critical aspect concerns data synchronization.  

3.2.4 Migration of applications across clusters 

An enterprise has deployed a set of applications on a given cluster, and, for a set of reasons 
(e.g., agreement with a different cloud provider, cluster upgrade, …) needs to migrate 
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temporarily or permanently all of them to a different cluster. The migration or relocation may 
be due to the triggering of intents associated with the application deployment. 

3.2.5 Access to Data spaces 

Different enterprises establish a relationship to share access to a given set of data, although 
each one maintains full control of its own part.  

3.2.6 Secure Workload Container Independence 

An enterprise wants to execute their workloads upon edge resources. The enterprise has 
different technologies to execute those workloads from VMs, containers, functions (FaaS), 
even plain OS processes. The application description needs to allow for application owners 
(the enterprise) to describe any workload container. Further the execution of this workload 
container needs to be secure and leverage the use of TEEs, this is especially the case on 
edge/on-premises devices that have lesser physical security and easier access by the public. 

3.2.7 Intent-based Application Lifecycle Management 

An enterprise needs to have a means to describe their application deployment clearly and 
concisely. They need to be able to deterministically specify where part of the application (a 
workload) needs to execute regarding location within the compute continuum. These 
specifications should also be loosened to be flexible. This flexibility should be given by intents 
in the case that location requirements are driven more from the functional aspects (e.g., 
latency). As such the system can better reason with the placement of these workloads. Further, 
other intents (aims) can be composed and resolved by the system. Such intents that are of 
interest and need by the use cases are Cost-based intents e.g., deploy this part of the system 
on the cheapest resources, move this workload when it becomes too expensive at the 
provider to another suitable provider. Further, energy-based intents are needed for example 
always aim to have application workloads executing on energy efficient hardware. 
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4 REQUIREMENTS 

This section lists the preliminary requirements that have been collected (1) from the FLUIDOS 
use case owners (TER, ROB, RSE) and (2) through external consultation, with respect to the 
objectives that are perceived as unique values by the FLUIDOS stakeholders. 

While this activity is still a work-in-progress at the time of writing this deliverable, in the future 
those requirements will be translated into technical objectives, which will be used to assess 
the success of this project. 

I want… So That… 

That FLUIDOS is aware of the device 
(e.g., robot) battery level, and power 
consumption 

I can remove or do not add computational workload in 
a almost empty battery robot, or heavy lifting robotic 
operation 

That FLUIDOS is aware of wireless 
network quality 

I can plan if can switch safely a load from cluster to 
another grading the network quality during the mission 

That FLUIDOS is aware of the state of 
robot (in mission/idle/moving 
platform/moving arm/charging) 

FLUIDOS can automatically and manually plan which 
the workload across the robot clusters taking in 
account robot state, and each state have different 
needs and goals 

That FLUIDOS allow me to switch k8s 
workload from cluster to another by 
request 

I can ask to switch off k8s workload from k8s (cluster) to 
specific one (or FLUIDOS choose) by request of the 
fleet manager 

I want to build a robot map outside the 
robot. This process is takes long and can 
be done offline 

I can make this CPU and/or GPU extensive process on 
the cluster that maximizes the time and working time 
of the robots 

Easy installation and low maintenance of 
the FLUIDOS system on the edge, cloud 
or robots 

I can deploy fast anything I have over the edge and 
without deeper knowledge 

An easy way to define the workloads 
taking in account all the points above 

I can deploy, update, rollback, change the 
orchestration rules so I can sell FLUIDOS to non-
technical customer (web based and yaml, etc..) 
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5 STATE OF THE ART 

This Section reports the state-of-the-art of algorithms, technologies, and software, updated 
to the writing time of this Deliverable, separating the different problems that are addressed 
by FLUIDOS, such as the creation of the computing continuum, its security, and more.  

5.1 COMPUTING CONTINUUM  

The idea of providing unified computing resources within a single continuum has been around 
for a few years, with multiple proposals both from the scientific community and enterprise-
driven open-source projects. The common idea is to provide a unified view of multiple 
distributed clusters either belonging to a single entity or located in a specific geographic area. 
Scientific papers tackle the problem from different points of view, proposing full-fledged 
solutions or Proof-of-Concepts (PoCs), either by focusing more on a vanilla approach with 
respect to the de-facto standard container orchestrator Kubernetes or by implementing their 
specific set of APIs.  

This Section presents the three most promising open-source projects that are most suited as 
a starting point for the liquid computing idea. More experimental projects that, although not 
the best choice to base FLUIDOS upon, can nevertheless provide nice ideas that can be 
possibly integrated and further developed in FLUIDOS, and additional related technologies 
is provided in the Appendix (Section 11). 

A final comparison will be provided, to allow the reader to better compare the respective 
advantages and disadvantages. 

5.1.1 KubeEdge 

KubeEdge [23] is an open-source tool that enables the orchestration of containerized 
applications on Edge devices using Kubernetes. It provides infrastructure support for network, 
application deployment, and metadata synchronization between the Cloud and Edge. 
Essentially, KubeEdge allows developers to write HTTP or MQTT-based applications, 
containerize them, and run them either at the Edge or in the Cloud, depending on their use 
cases. 
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Figure 8. KubeEdge architecture. 

The Cloud side of KubeEdge is considered the master cluster, whether on-premises or 
managed by cloud providers like Amazon or Google. This side connects with edge devices 
remotely, deploying pods efficiently on them. Core components on both Cloud and Edge 
sides are necessary to facilitate communication, with the most crucial ones being CloudCore 
and EdgeCore: 

• CloudCore: This component runs in the cloud and is responsible for managing the 
overall KubeEdge system. It is the gluing layer between Kubernetes API server and 
the KubeEdge edge part. Moreover, it communicates with nodes and other 
components at the edge to orchestrate the deployment and management of 
containerized applications and devices on the edge.  

• EdgeCore: This component runs on the edge device and is responsible for managing 
the deployment and execution of containerized applications on the edge device. It 
communicates with the KubeEdge Controller to receive instructions and to report the 
status of the applications running on the edge device. It is also responsible for 
detecting and registering the devices and sensors connected to the edge device with 
the KubeEdge system. It enables applications running on the edge device to access 
the data and functionality of these devices and sensors. 

 

To enable adding edge devices as nodes of the Kubernetes cluster, the CloudCore 
component's installation is required on the cloud side. This component consists of three 
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modules: CloudHub, EdgeController, and DeviceController. CloudHub acts as a mediator 
between EdgeController, DeviceController, and Edge side for communication. 
EdgeController bridges the Kubernetes API server to EdgeCore, while DeviceController 
manages device metadata/status in a dynamic manner. 

On the edge side, the installation of a container runtime such as Docker or containerd and 
EdgeCore components is necessary for communication with the cloud. EdgeCore has six 
modules, including EdgeD and EdgeHub, with a reduced memory footprint, responsible for 
managing the lifecycle of pods and serving as a communication link between the edge and 
cloud, respectively. 

In summary, KubeEdge facilitates the orchestration of edge devices by installing components 
on both the cloud and edge sides. While KubeEdge has reduced resource requirements on 
edge nodes, it does not provide network, storage, and service fabric across the entire virtual 
infrastructure. Consequently, it is more suitable for IoT-oriented applications that run at the 
edge, gather local data, and send it to other services running on the cloud side for further 
processing and storage. 

5.1.2 Karmada 

Karmada (Kubernetes Armada) [24] is a management system for Kubernetes that enables 
cloud-native applications to run on multiple clusters and clouds without the need to modify 
the applications. Karmada utilizes Kubernetes-native APIs and advanced scheduling 
capabilities to provide a seamless, multi-cloud Kubernetes experience. Its aim is to automate 
multi-cluster application management in hybrid cloud scenarios with centralized multi-cloud 
management, high availability, failure recovery, and traffic scheduling. 

 

Figure 9. Karmada overview. 
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Karmada is compatible with the Kubernetes native API and can seamlessly upgrade from a 
single-cluster to multi-cluster while integrating with the existing K8s toolchain. However, most 
of its capabilities require the use of new CRDs, which requires users and dev-ops to learn a 
new way to interact with their clusters, as traditional Kubernetes primitives cannot be used to 
control the virtual continuum. 

Karmada has three built-in policies for deployment scenarios and multiple scheduling policies 
for cluster affinity, multi-cluster splitting/rebalancing, and multi-dimension HA. It also provides 
centralized management for clusters in public cloud, on-premises or at the edge.  

Karmada offers various concepts and resources that manage the multi-cloud environment, 
including a Resource Template, Propagation Policy API, and Override Policy API. Its overall 
architecture includes the Karmada Control Plane, which includes the Karmada API Server, 
Karmada Controller Manager, Karmada Scheduler, and an etcd database.  

Karmada supports safe isolation, multi-mode connection, and multi-cloud. It also offers 
support for cluster distribution capabilities under various scheduling strategies and allows for 
differential configuration through OverridePolicy. Karmada further offers rescheduling 
functionalities with components like Descheduler and Scheduler-estimator that trigger 
rescheduling based on instance state changes in member clusters. 

Karmada supports cluster failover, cluster taint settings, and global uniform resource view. It 
also offers unified authentication with a single API access entry and access control that is 
consistent with member clusters. 

Karmada is a tool that facilitates the administration of multiple Kubernetes clusters using the 
master-worker model. However, this model presents a challenge as it does not allow for a 
federation of clusters at equal levels. Instead, one cluster must always take the lead in 
coordinating the others. Additionally, Karmada does not include a default network fabric. To 
enable communication between pods in the clusters, Karmada relies on Submariner. This 
means that Submariner must be installed in each cluster to ensure seamless communication. 

5.1.3 Liqo  

Liqo [25] is an open-source project that enables dynamic and seamless Kubernetes multi-
cluster topologies, supporting heterogeneous on-premises, cloud and edge infrastructures. 
While its focus is on cloud-oriented datacenter and servers, it could be used also on individual 
devices (e.g., coupled with lighter Kubernetes distributions, such as K3s), although it may not 
be appropriate to support features such as real-time scheduling and such. 

Among its distinctive features, Liqo encompasses four primary capabilities, namely peering, 
offloading, network fabric, and storage fabric. 

• Peering: it involves one-way relationships between two Kubernetes clusters, which can 
act as providers and consumers in multiple peerings, and involves four tasks: 
authentication, parameters negotiation, virtual node setup, and network fabric setup. 
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The network fabric is configured to establish a secure cross-cluster VPN tunnel, 
enabling seamless communication between local and remote cluster pods. 

• Offloading: the virtual node abstraction enables workload offloading by spawning a 
virtual node that represents and aggregates resources from a remote cluster, which is 
fully compliant with standard Kubernetes APIs and supported by Liqo, that creates 
twin namespaces for offloaded pods, supports both stateless and stateful pods, and 
ensures remote pod resiliency through a custom resource, while propagating and 
synchronizing selected control plane information into remote clusters for seamless 
execution of offloaded pods. 

• Network fabric: it enables pods to communicate with each other across multiple 
clusters, even if they have overlapping network spaces. 

• Storage fabric: it simplifies multi-cluster scenarios by postponing storage binding until 
the first consumer is scheduled and using data gravity to ensure pods requesting 
existing storage pools are scheduled onto the cluster hosting the corresponding data. 

Liqo is a software tool that enables the management of multiple Kubernetes clusters. It can 
operate using either the master-worker paradigm or not. The first scenario allows Liqo to use 
one cluster to coordinate the others, while the second one creates a federation of clusters in 
which each one is at the same level as the others without any hierarchy. Liqo also comes with 
a built-in network fabric, enabling communication between pods when they are offloaded to 
another cluster. 

5.1.4 Comparison summary 

This section provides a compact comparison between the most promising solutions presented 
in this document. The comparison is presented in the form of a table, to summarize the most 
important features, giving an easier way for the reader to understand the similarities and 
differences between solutions. 

Table 2. Most promising projects to build the computing continuum. 

 KubeEdge Karmada Liqo Cloudlets FLEDGE CRDTs 
DB 

Use K8s Partially Yes Yes No No Yes 

Cluster or Node Node Cluster and 
Node 

Cluster - Node Cluster 

Networking External External Included - Included - 

Resource consumption Low High High Low Low - 

Status Well-
established 

Well-
established 

Well-
established 

Experimental Experimental Research 

# GitHub stars 5800 3200 820 - - - 

# GitHub contributors 267 170 40 - - - 
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1st GitHub commit Sept 2018 Nov 2020 Nov 2019    

 

The above table shows that, among the most interesting projects, only three are well-
established, actively supported and hence can be proficiently used as a foundation to build 
the FLUIDOS computing continuum, namely KubeEdge, Karmada, and Liqo. However, 
KubeEdge's focus is more for the “far” edge of the network, particularly tiny individual 
devices. Hence, from the point of view of cloud native technologies (at the edge / cloud), the 
most appropriate choices are Karmada and Liqo. Karmada provides a specialized (hence, not 
compatible with Vanilla Kubernetes) API server to process requests and enforce them onto 
clusters but does not include network fabric in its functionalities and cannot handle scenarios 
different from the master-worker one. On the other hand, Liqo is almost 100% compatible 
with vanilla Kubernetes, it does not mandate a master-worker scenario (although it can be 
supported) and can create a federation where each cluster is at the same level as others, 
allowing a different topology between clusters. Additionally, it provides a network fabric, 
making it possible to get multi-cluster and pod connectivity features from a single solution.  

Based on this analysis, Liqo represents the most promising technology to base FLUIDOS upon 
thanks to its ability to provide a topology between clusters instead of a hierarchical scenario, 
with the possibility to be integrated with KubeEdge for “far” edge scenarios. In fact, 
KubeEdge is the ideal choice for “tiny” edge devices since it enables their integration into 
Kubernetes clusters, facilitating their management and deployment of pods on edge devices, 
which is useful for various purposes such as reducing distance from users, with minimal 
resource requirements. 

Certainly, there are certain gaps that require addressing for enhancing the effectiveness of 
the current solutions presented. For a solution that strives to establish a computing 
continuum, it is crucial to ensure that all clusters are managed equally, while also allowing for 
the creation of hierarchies if necessary. A missing element relates to the exchange of details 
regarding the resources available in different clusters, which impedes negotiation and 
contractual agreements. Additionally, ensuring the security of all the aforementioned 
operations is a substantial gap that needs to be filled. 

5.2 SECURITY AND PRIVACY 

The evolution of computing paradigms is slowly breaking the boundaries of data centers, 
widening the infrastructure's scope to include edge and micro-edge nodes. The complexity 
of cloud-to-edge environments, their heterogeneous nature, as well as the intricacies of 
cloud-native applications and their management systems have raised concerns within the 
security and privacy community [38]. FLUIDOS proposes to go beyond the current evolution 
and envisions a future in which it would be possible to dynamically create cloud-to-edge 
computation clusters among peering entities. In such a scenario, the traditional concept of 



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 38 of 133 

 

the security perimeter is expected to disappear, in favor of a zero-trust approach to security 
[39], in which nothing, even inside an organization’s network, can be trusted. 

In this respect, it is worth noting how, the idea of having perimeters blurs from the security 
point of view, but it is still valid when another point of view is considered. For instance, 
according to Section 1.1, the three characteristics of Deployment, Communication and 
Resource Availability transparency still hold within a given perimeter, while cannot be 
achieved at large, outside the current (virtual) cluster. 

FLUIDOS plans to investigate zero-trust methods and algorithms to guarantee security and 
privacy in storing, transmitting, and processing data in the envisioned cloud-to-edge 
continuum. To this account, the consortium identified the following main areas of 
investigation: identity management (authentication, authorization and key management) to 
ensure that legitimate parties have the right access to the right resources, isolation and trusted 
computing to provide secure environments to run workloads in environments that are not 
owned, anomaly detection to protect both hosts and guests, and security orchestration to 
manage the security posture in an infrastructure that is changing over time. The following 
subsections provide a preliminary overview of the state-of-the-art solutions in the above-
mentioned areas. 

5.2.1 Identity Management  

The FLUIDOS continuum could benefit from a distributed approach to identity management, 
in which the user perspective and its Self-Sovereign Identity (SSI) are possibly central, as 
explained in C. Allen [40] and envisioned by the European Union with several initiatives as the 
European Self Sovereign Identity framework (eSSIF) [41].  

Indeed, current centralized access control systems, based on a trusted third party, have major 
limitations, including a high cost of trust and the risk of a single point of failure. Latest research 
proposes to employ decentralized identifiers (DIDs) [42] and verifiable credentials (VCs) [43] 
as a highly distributed and lightweight alternative to well-known and established 
authentication methods. The blockchain technology can be used both as a replacement for 
the registration authority (A. Mühle et al. [44]) and as an authorization scheme for distributed 
services (as in Yu L. et al. [45], which specifically targeted mobile cloud services). The scheme 
proposed by Yu et al. uses smart contracts to provide a dynamic update of access permissions 
and reduces the storage overhead by storing only one transaction in the blockchain to record 
users' access privileges on different service providers.  

N. Fotiou et al. [46] provide a proof of concept of a DID registry and a distributed Policy 
Decision Point (PDP) and Policy Enforcement Point (PEP). In G. Peterson [47] PEPs are 
proposed to enable fine-grained, decentralized security policy decisions through languages 
such as Extensible Access Control Markup Language (XACML). The security policy manager 
bundles these decisions into standards-based XML documents that can be transported and 
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consumed across many disparate parts in the system. This lets a PEP query policy decision 
points (PDPs) to make authorization decisions in a highly distributed way.  

With respect to management of cryptographic keys in the cloud-to-edge scenario, S. 
Kahvazadeh et. al. [48] propose a Distributed Key Management and Authentication (DKMA) 
solution that tries to overcome the issues that a centralized key distribution method fails to 
address. As a centralized alternative, Key Management Systems (KMSs) and associated 
cryptographic services could also be provided as cloud-based services, such as the case of 
AWS Key Management Service (KMS) [49], Microsoft Azure Key Vault [50] and Google Cloud 
KMS [51]. These solutions offer scalable and cost-effective key management services that can 
be easily integrated with cloud environments. Containerization is also becoming a popular 
deployment model for KMS solutions, allowing for greater flexibility and portability across 
different environments. 

5.2.1.1 Towards the FLUIDOS vision 

For identity management, the project will analyze the available solutions in literature and 
commercial products to choose the ones that best suit FLUIDOS's characteristics. To identify 
the nodes, we prefer the use of identifiers that can be managed in a decentralized manner, 
such as the Decentralized Identifiers recommended by W3C, rather than centralized identifiers 
and credentials. Additionally, we will use verifiable credentials that can be generated in 
different FLUIDOS domains while maintaining their independence. This approach allows us 
to maintain a decentralized architecture that allows for multi-ownership, ensuring that each 
actor has control over their own resources. 

To store the identity information and contracts between the peers, we will use distributed 
storages such as Distributed Ledgers. We will avoid using KMSs and cryptographic services 
in the cloud that would generate unwanted dependencies. By using these elements, we can 
explore the possibilities that their different configurations can provide in a fluid topology of 
FLUIDOS to face problems like preserving the privacy of the contracts between peers. 

5.2.2 Isolation and Trusted Computer 

Trusted Execution Environments (TEE) and Secure Enclaves are technologies that provide a 
secure environment for executing sensitive and critical applications, such as mobile banking, 
digital signatures, and secure communications. The Trusted Execution Environment (TEE) 
technology is a rapidly evolving field, with new developments and innovations happening all 
the time. Technological advancements in the field of TEE range from Hardware-based TEEs 
(e.g., AMD Secure Encrypted Virtualization [52], Intel TDX [53]) to Cloud-based TEEs (e.g., 
Amazon Web Services (AWS) Nitro Enclaves [54], Google Cloud Confidential Computing [55]) 
and Virtualized TEEs (e.g., Samsung KNOX Virtual Private Space (VPS)). 

The research community is rather active in the field: for instance, Gu et al. [56], propose an 
SDK to enable enclave migration on the cloud, while Alder et al. [57] build on a secure live 
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migration of enclaves on untrusted clouds and use a per-host dedicated enclave to migrate 
the persistent state of an enclave. 

Software-based developments of the concept of TEEs include the so-called “Confidential 
Container” [58], that is a secure, isolated environment for storing and processing sensitive 
information. Confidential Containers are similar to Trusted Execution Environments (TEEs), as 
they provide a secure environment for sensitive information; however, they focus specifically 
on the storage and management of confidential data. 

Of particular interest for the FLUIDOS project is the TEE orchestration, which refers to the 
management and coordination of multiple Trusted Execution Environments (TEEs) to provide 
a secure and efficient environment for executing sensitive and critical applications. 

TEE orchestration involves various tasks, such as the provisioning and deployment of TEEs, 
their management and monitoring, the establishment of secure communications among TEEs, 
load balancing and resource allocation, compliance, and security management. TEE 
orchestration is available today with platforms like Fortanix [59] and Red Hat OpenShift [60]. 
Moreover, the majority is designed to support a specific type of TEE. 

5.2.2.1 Towards the FLUIDOS vision 

FLUIDOS will need to extend this orchestration capabilities along the continuum to enable a 
seamless management of sensitive workloads in the cloud, on-premises, or on the edge of 
the network. It should also provide a unified management interface for deploying and 
managing TEEs across different secure computing environments (AMD-DEV, Intel SGX, Arm 
Trustzone…). Consequently, the TEEs orchestration within FLUIDOS is expected to combine 
multiple secure runtimes. 

5.2.3 Proactive and reactive container defense 

In a zero-trust environment, each workload should be secured from threat actors as well as 
honest but curious infrastructure providers. At the same time, protection should be granted 
to compute nodes exposed in FLUIDOS and to the applications they are running. This can be 
done either proactively (before deployment) by securing single containers, or reactively (at 
runtime) by detecting anomalies in the containers' behavior. 

5.2.3.1 Proactive container defense 

With respect to the former, within FLUIDOS we will rely on containers not only to develop 
user applications but also to run the various components that make up a FLUIDOS node. 

Containers provide a lightweight form of virtualization at the cost of a weaker isolation with 
respect to virtual machines (VMs). As shown in literature, adversaries can attack container 
ecosystems to discover information leakage channels that can be exploited from within 
containers [61][62], gain elevated privileges in the host [63], slow down the containers’ 
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execution or disrupt their availability [64], and impersonate containers [65] (among others). 
There are several fundamental reasons why these attacks are possible. Firstly, the shared 
kernel-resource model used by containers offers less isolation than VMs and significantly 
increases their attack surface. This can increase the impact of attacks because a single 
vulnerability in the kernel can allow adversaries to compromise co-resident containers, or even 
worse, the host. Secondly, there are public repositories of container images that are widely 
used today - and are even used as a basis for creating other images - which, based on the 
results of various research works, contain a high number of vulnerabilities. Thirdly, the attack 
surface of the container ecosystem remains largely unexplored – especially when it comes to 
privacy attacks. Four, some security mechanisms to protect containers – based on standard 
security features and network access control policies of Linux – have been shown to be 
vulnerable to attacks [66][67]. Last but not least, the majority of security mechanisms require 
network operators to manually configure them. The latter is typically a laborious task that is 
prone to misconfigurations, especially in such dynamic environments. 

5.2.3.2 Towards the FLUIDOS vision 

From the previous discussion, it is clear how impossible it is to completely protect the 
container ecosystem against security attacks. In these scenarios it is therefore important to 
have containment mechanisms in place to minimize the consequences of attacks as much as 
possible when they occur. In this line of work, we are currently designing a tool capable of 
automatically identifying the minimum set of privileges that containers need to function, with 
the aim of significantly reducing the attack surface of the kernel. According to the NIST 
security guidelines [102], kernel attack surface reduction techniques are a promising approach 
to strengthen security in container environments. In parallel to the above, from a privacy 
perspective, we are exploring various types of side-channels that may arise in a confidential 
computing scenario to leak sensitive information about containerized applications. More 
specifically, we are studying the feasibility of attacks whereby adversaries try to obtain 
sensitive information about containerized applications running inside a TEE solely from the 
system calls they invoke. With this work, we aim to demonstrate that it is crucial to protect the 
interfaces of containerized applications running inside the TEE with the “outside world.” 

5.2.3.3 Reactive container defence 

With respect to reactive defense, even in the case in which the container runs in a TEE, the 
host must provide containers with access to system calls, an interface that might be exploited 
to perform attacks. To this account, El Khairi et al. [68] propose a novel anomaly-based 
Intrusion Detection System (IDS) that relies on monitoring heterogeneous properties of 
system calls. Attacks might target other components and processes of the FLUIDOS 
continuum. Cloud and edge nodes shall be equipped with advanced IDS systems able to 
countermeasure different kinds of attacks, such as LUCID [69], a lightweight neural network 
proposed to detect Distributed Denial of Service (DDoS) attacks, or the platform for 
automated detection and mitigation of DDoS attacks proposed by Demoulin et al. [70]. Lawal 



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 42 of 133 

 

et al. [71] proposed an anomaly mitigation framework for IoT that resorts to fog computing 
to guarantee faster and accurate detection. 

5.2.3.4 Towards the FLUIDOS vision 

Even though the body of literature targeting threat and intrusion detection and mitigation is 
huge, FLUIDOS introduces challenges that are seldom explored in these works. For instance, 
the project assumes that resources at the edge will be shared with different potential acquirers 
based on opportunistically created agreements. Depending on the type of service provided, 
it could be assumed that the operating system on the node is not trustable, or that the 
workload is not, and therefore, it might be the case that the project needs to ensure that 
network traffic and/or system calls are not being used to attack the host machine. However, 
given the limited amount of resources available at the edge, it is of the utmost importance to 
limit the computational footprint of the monitoring and detection processes while 
guaranteeing an adequate level of accuracy. Another venue of investigation might concern 
the use of images by different tenants insisting on the same resources. 

5.2.4 Intent-based Security Orchestration 

The works mentioned above provide detection and mitigation methods for specific attacks 
and under given conditions. However, managing the security posture in the cloud-to-edge 
continuum proposed by FLUIDOS requires effective and automated coordination of multiple 
security services over a dynamically changing substrate infrastructure. Such an ambitious 
objective can be achieved through automated, intent/policy-based security orchestration. To 
this account, Zarca et al. [72] propose an architecture to orchestrate security policies in 
proactive and reactive ways, so the system is able to react dynamically with different 
countermeasures (filtering, forwarding, IoT honeynet, IoT management or service 
management among others) to different kinds of attacks (e.g., DoS, SlowDoS, DDoS, data 
tampering or other abnormal behaviors), according to the current status of the infrastructure. 
J. Kim et al. [73] defined a security framework in the field of cloud computing to provide an 
advanced system that interprets and translates intents to deploy security policies without the 
need of any security intervention from the operator. However, the framework requires human 
intervention, does not deal with the dynamic federation of infrastructures, and does not 
provide automated detection and mitigation of attacks. D. Bringhenti et al. [74][75] proposed 
a new methodology for automated orchestration and configuration of distributed firewalls in 
a virtualized network. The proposed methodology is based on a formal model that assures 
that the final solution satisfies the security requirements (correctness by construction). Valenza 
et al. [76] define two abstract languages to represent Network Security Intents at a high-level 
or medium-level of abstraction. 

Among the security techniques that require efficient management in the continuum, cyber 
deception represent a notable candidate for FLUIDOS, as it provides an excellent 
complement to anomaly detection to reduce false positives as well as a priceless source of 
cyber threat intelligence information, but it should be carefully orchestrated to avoid needless 



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 43 of 133 

 

resource consumption. For many years, the go-to mathematical framework for solving this 
problem has been game theory, where it is modeled as a game between the attacker and 
defender party, each characterized by its own reward function. Ferguson-Walter et al. [77] 
point out that one-shot games do not manage to properly capture the possible interactions 
between the two parties and therefore propose to use multi-stage games for this purpose. 
Other studies, instead, propose methodologies to address decoy placement leveraging 
machine learning models, starting from the assumption that it is possible to learn from the 
environment itself the best placement. Amin et al. [78] propose a dynamic honeypot 
placement method based on a Hidden Markov Model, where decoys are placed alongside 
the most probable attack paths according to previous attack records. However, none of these 
works consider the limited availability of resources that is peculiar of edge environments. In 
addition to that, most of these works and some of the solutions commercially available (e.g., 
Metallic ThreatWise [79]) rely upon pre-built applications that are usually deployed as 
standalone elements within the defender environment. However, as Osman Amr et al. [80] 
propose, a deception mechanism could be based on clones of existing containers in a cloud-
native environment. This is practically an unsolved challenge, as it requires a complex 
procedure to clone, isolate and deploy deceptive containers. 

5.2.4.1 Towards the FLUIDOS vision 

The works mentioned above have taken approaches that align with FLUIDOS's intent-driven 
characteristic. However, these approaches were tested in closed infrastructures, specific 
scenarios, and with limited sets of cases using algorithms. To tailor and extend these solutions 
for FLUIDOS, we need to enhance the security orchestration through the node security 
orchestrator, which will collaborate with the service orchestrator and other FLUIDOS 
components to elaborate the user intent and ensure the required security level. 

We will design novel security orchestration algorithms that take into due account the extreme 
dynamicity of the infrastructure that is envisioned in FLUIDOS. In order to complement the 
proposed anomaly detection and mitigation strategies, we will propose a novel orchestrated, 
cloud-native and resource-aware cyber deception solution. 

With this foundation, we will test a set of security orchestration algorithms and techniques, 
analyze their behavior and security levels in a fluid computing continuum. This will allow us to 
evaluate and improve the security of the FLUIDOS liquid computing continuum. 

5.3 ENERGY-AWARE COMPUTING CONTINUUM 

This section presents the state of the art with respect to the energy-aware computing 
continuum. Specifically, we first detail the main available technologies to collect energy-
related metrics of the devices participating in the continuum resource-sharing process. We 
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then provide an overview of the most promising approaches of major cloud providers in 
reducing the overall carbon and energy footprint for computing devices. 

5.3.1 Energy measurement tools 

The following sections will analyze the available tools to collect power consumption metrics 
from Linux-based systems.  

5.3.1.1 Intel RAPL 

RAPL (Running Average Power Limit) is a reporting interface for cumulative energy usage of 
multiple system-on-chip (SoC) power domains. The RAPL energy reporting capability has 
been present on Intel SoC devices for several generations, and energy reporting is industry 
standard practice. This energy information is used by Intel processors for internal SoC 
management functions, such as controlling SoC power limits in conjunction with Intel Turbo 
Boost Technology2. 

At runtime, certain privileged software may execute platform power and temperature 
management. Energy information from RAPL may be used by such applications to adjust 
system performance or track power use. Energy data is occasionally utilized in server systems 
to perform rack-level power management and efficiency loading across units. 

Platforms in RAPL are separated into domains for fine-grained reporting and control. A RAPL 
domain is a physically significant power management domain. The exact RAPL domains 
offered in a platform differ depending on the product category. RAPL implements four power 
domains (Figure 10): 

1) Package Domain: This power domain represents the power consumption of the 
CPU's complete package, including cores and additional components (i.e., 
integrated graphic card). 

2) DRAM Domain [101]: This power domain accounts for the power consumption of 
the DRAM. It is only accessible on servers. 

3) PP0/Core Domain (PowerPlane 0): is used to monitor the power of the CPU cores 
only. 

4) PP1/Graphic Domain (PowerPlane 1): is used to monitor the power of the CPU's 
graphic component alone. Because of this, it is only available for non-server 
architectures. Graphic components are not included in Intel server designs. 

NOTE: The reported power consumption at the Package domain is: PPKG=PP0+ PP1. 

 
2 Although the RAPL interface has been designed by INTEL, some AMD chips are also compatible. AMD Fam17h 
supports an MSR interface that is semi-compatible with RAPL. Older AMD supports the Application Power 
Management (APM) interface. The CPU compatibility table is available at 
https://web.eece.maine.edu/~vweaver/projects/rapl/rapl_support.html. 
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Figure 10. Different power domains in RAPL. 

Each RAPL domain supports: 

• ENERGY_STATUS for power monitoring. 

• POWER_LIMIT and TIME_WINDOW for controlling power. 

• PERF_STATUS for monitoring the performance impact of the power limit. 

• RAPL_INFO for information on measurement units, the minimum and maximum power 
supported by the domain. 

In addition, RAPL has 32-bit performance counters for each power domain to monitor energy 
use and overall throttled time.  

5.3.1.2 ACPI interface 

The Advanced Configuration and Power Interface (ACPI) specification is an open standard 
that was created by a group of hardware and software companies including HP, Intel, 
Microsoft, Phoenix e Toshiba. It defines standard interfaces that allow operating systems to 
configure motherboard devices and control power. ACPI may be used for specific hardware 
components as well as the full system. Furthermore, it monitors the state of the system and 
utilizes power management techniques by altering the CPU running frequency and putting 
unnecessary components to sleep. 

ACPI is intended to allow the operating system to control each hardware component. Prior to 
the development of ACPI, power management was handled via Plug and Play (PnP) and 
Advanced Power Management (APM) subsystems, which were implemented in hardware and 
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hence were less versatile in terms of management capabilities. ACPI, on the other hand, is 
implemented in the OS layer and thus gives greater freedom for component management, 
as well as being hardware independent (if the hardware meets the ACPI standard). 

The ACPI allows the operating system to push certain hardware devices to a low power 
consumption state when they are not in use. Similarly, if the operating system determines that 
the applications do not demand a huge number of resources, ACPI can move the entire 
environment to a low power consumption mode. 

The ACPI specification details different device states to represent the execution of the system. 
Specifically, they can be classified into: 

• G states, representing the system's global execution state (e.g., working, sleeping, …). 

• D states, representing the device-dependent states (e.g., fully ON, …). 

• C states, representing the CPU power states. They detail the different CPU execution 
states (e.g., operating state, halt, sleep, …). 

• P states, representing the operating frequency of the CPU cores (e.g., maximum 
frequency, frequency scaled, …). 

Using ACPI it is thus possible to interact with the different states of the device and collect 
relevant metrics on the device execution. Furthermore, it is possible to modify the various 
states according to energy-aware management algorithms. 

5.3.1.3 IPMI interface 

IPMI is a collection of computer interface requirements for a self-contained computer 
subsystem that offers administration and monitoring capabilities independently of the host 
system's CPU, firmware (BIOS or UEFI), and operating system. IPMI is a set of interfaces used 
by system administrators for out-of-band administration and monitoring of computer systems. 
For example, IPMI allows the administration of a machine that is switched off or otherwise 
unresponsive to connect to the hardware over a network rather than an operating system or 
login shell. 

The use of a standardized interface and protocol allows IPMI-based systems management 
software to control many different servers. IPMI, as a message-based, hardware-level interface 
specification, functions independently of the operating system (OS) to enable administrators 
to remotely control a system in the absence of an operating system or system management 
software. As a result, IPMI functionalities can be used in one of three scenarios: 

• Before an OS has booted (allowing, for example, the remote monitoring or changing 
of BIOS settings). 

• When the system is powered down. 

• After OS or system failure – the key characteristic of IPMI compared with in-band 
system management is that it enables remote login to the operating system using SSH. 
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IPMI messaging may be used by system administrators to monitor platform status (such as 
system temperatures, voltages, fans, power supplies, and chassis intrusion). 

The intelligence in the IPMI architecture is provided by the baseboard management controller 
(BMC). It is a customized microcontroller that is integrated on the motherboard of a computer, 
most commonly a server. The BMC is in charge of overseeing the interaction between system 
management software and platform hardware. BMC has its own firmware and RAM. 

Temperature, cooling fan speeds, power status, operating system (OS) status, and other 
characteristics are reported to the BMC by various sensors embedded into the computer 
system. The BMC monitors the sensors and can transmit network warnings to a system 
administrator if any of the metrics exceed pre-set thresholds, signaling a potential system 
failure. 

5.3.1.4 KEPLER 

Kepler (Kubernetes-based Efficient Power Level Exporter) [81] is a Kubernetes-based solution 
for energy and power consumption monitoring on a cluster of servers. It uses eBPF to probe 
CPU performance counters and Linux kernel tracepoints and collect the exact CPU 
consumption of the different processes running on the system. Kepler then correlates such 
information with the power consumption metrics of the device to compute the contribution 
of the different processes to the overall power consumption of the device. 

 

Figure 11. Kepler: overview of the main workflow. 

Specifically, power consumption metrics are collected using the tools detailed in the previous 
section (INTEL RAPL, ACPI, IPMI) if available. If not available or incomplete, Kepler relies on 
a pre-trained neural network to generate an estimate of the power consumption, the Kepler 
Model Server. The main feature of the Kepler Model Server is to return a power estimation 
model corresponding to the request containing target granularity (node in total, node per 
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each processor component, pod in total, pod per each processor component), available input 
metrics, and model filters such as accuracy. In addition, the online trainer can be deployed as 
a sidecar container to the server (main container) to execute training pipelines and update the 
model on the fly when power metrics are available. 

The default Kepler installation consists of a pod, the Kepler Exporter, deployed on each node 
of the Kubernetes cluster. The pod is then in charge of collecting all the metrics previously 
mentioned and interacting with the model server to get estimates if the actual metrics are not 
available. 

Metrics can then be collected and stored using Prometheus and the OpenTelemetry standard 
for data visualization and post-processing. Examples of exported metrics are: 

• kepler_container_core_joules_total (Counter) This measures the total energy 
consumption on CPU cores that a certain container has used. 

• kepler_container_gpu_joules_total (Counter) This measures the total energy 
consumption on the GPUs that a certain container has used. 

• kepler_node_core_joules_total (Counter) Similar to container metrics, it represents the 
aggregation of all containers running on the node and operating system (i.e., 
“system_process”). 

• kepler_node_gpu_joules_total (Counter) Similar to container metrics, it represents the 
aggregation of all containers running on the node and operating system (i.e., 
“system_process”). 

An example of a Grafana dashboard showing some of the metrics gathered by Kepler is shown 
in the picture below. 

 

Figure 12. Screenshot for Kepler metrics. 



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 49 of 133 

 

5.3.2 Carbon-aware scheduling 

Currently, small and on-premises datacenter are not required to be compliant with any 
“green” directives, hence their effort is mostly driven by the necessity to reduce economic 
costs; in some limited cases, energy-aware policies are implemented for the will to declare 
the operating company as compliant with the “green” economy. 

For multiple reasons (often both economic and in terms of reputation), most hyperscalers  
already implement some energy-aware computing policies; we present here two possible 
examples, from Google and Microsoft. 

5.3.2.1 Google’s Carbon-aware Computing 

Developed by Google for its data centers across the globe, this concept envisions shifting 
computation loads in time and space to take advantage of low-carbon electricity. 

The core components are as follows: 

• Fetching pipeline for next day’s carbon intensity forecast. 

• Power models pipeline for statistical model training which maps CPU usage to power 
consumption for various power domains characteristic to Google’s heterogeneous 
infrastructure landscape. 

• Load forecasting pipeline responsible for generating the next day’s forecasts for 
workload demand (both flexible and inflexible) on the cluster level. An important 
characteristic of this pipeline is the evaluation of the forecasting error, which proves to 
be crucial for the following two components. 

• Optimization pipeline co-optimizes the next day’s expected carbon footprint and 
power peaks. The latter are subject to infrastructure and application service level 
objective (SLO) constraints as well as contractual and resource capacity limits. 

• SLO violation detection raises a flag when the daily flexible demand of a cluster is not 
met. This triggers the cluster being excluded from shaping pool for a week in order 
for the load forecasts (component #3) to adapt to the rise in demand. 
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Figure 13. Demonstration of cluster load shaping by a VCC. 

The algorithm yields the so-called Virtual Capacity Curves (VCCs), that are further used to 
reshape the peaks of flexible load and shift them towards more favorable times of the day. 

5.3.2.2 Microsoft’s Carbon-aware Kubernetes 

With a similar purpose as Google, Microsoft puts forward the idea of expanding a vanilla 
Kubernetes scheduler with a weighting algorithm to optimize the node-selection process for 
the purposes of sustainability. 

Apart from the fundamental components of Kubernetes and functionality developed by 
James et al. [83], this concept from Microsoft incorporates carbon intensity data and a 
customizable weighting algorithm. The most basic version of this algorithm deals with 
normalized “Marginal Operating Emission Rate” (MOER) for each cluster node.  The idea is 
to take the MOER value of an individual node and divide it by the total MOER values across 
all nodes to get a normalized percentage weighting of each node. Optionally, a latency 
constraint, as well as predicted MOER values, can be built into the weighting algorithm for a 
more sophisticated decision process. 

5.4 INTENT DESCRIPTION LANGUAGES 

FLUIDOS foresee the possibility to drive the virtual infrastructure through Intent-driven 
policies and languages, hence enabling to declare high-level goals (e.g., “deploy this 
application on multiple sites in France, at no more than 10ms from its end-user customers”) 
instead of issuing imperative commands (e.g., “deploy this application on the Marseille-east 
site, on the Nice site, and more”). In this section we highlight the most relevant background 
for high-level intent-description languages. 
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The OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) [89] is 
the de-facto modelling and representation paradigm for specifying Infrastructure as Code 
(IaC). TOSCA allows for the expression of topologies of cloud-based applications, their 
components and relationships, through node and relationship templates. These templates 
represent respectively the resources or components to be used in the deployment and the 
dependencies between the nodes [90]. TOSCA is an open standard designed to be cloud 
platform agnostic, unlike similar orchestration standards such as AWS CloudFormation or 
OpenStack Heat, which are tailored to their specific platforms. TOSCA compliant 
orchestrators such as xOpera [91] allow for cloud application deployment to arbitrary IaaS. In 
[92], Tamburri et al. elaborate on the possibility of intent modelling using TOSCA templates, 
and [93] describe a proof-of-concept Intent-based TOSCA Cloud Management Platform that 
transforms high-level intents, written in a natural-like language, into TOSCA YAML IaC 
definition files. 

There exists a similar line of research in translating high level network intents into low-level 
network configurations that can be pushed and configure network devices. Intent Description 
Languages (IDLs) such as the Network Intent LanguagE (NILE) [94], [95] have been introduced. 
In [94], the “Lumi” chatbot uses NILE as an abstraction layer between the natural language 
description of the network intent provided by the end user and the final Merlin [96] network 
configuration language. Additionally, [97] converts multiple network intents described using 
NILE into a “.P4” configuration file. Natural Language Processing (NLP) techniques are used 
in [94], [98] to perform entity extraction, selection, and labelling, in conjunction with user 
feedback to correctly perform the translation of the intent into the intermediary 
representation. 

MISSING SECTIONS 

5.5 RESOURCE AND SERVICE BROKERING 

Resource and service brokering represent a key concept in FLUIDOS, at least in two directions: 

• A small device, with limited resources, may need to give up some of its functions to a 
more complete FLUIDOS node, featuring full FLUIDOS capabilities, which takes care 
of its integration within a FLUIDOS environment. 

• Cloud-native infrastructures, such as a data-center on-premises, may leverage some 
(optional) supporting component e.g., to discovery available resources and services 
among the many available clusters, and possibly to delegate to that component some 
of its complex operations (e.g., compare the most convenient offer for a given amount 
of desired resources). 
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In this respect, a few solutions are currently available. The most appropriate is the Open 
Service Broker API3 (OSBAPI), a specification for creating, managing, and consuming services 
in cloud-native environments. It defines a standard way for applications to discover, provision, 
and bind to services, regardless of the underlying infrastructure or platform. It allows for the 
creation of a marketplace of services that can be easily discovered and consumed by 
developers, and enables providers to build and offer services in a platform-agnostic manner. 
The Open Service Broker API works by providing a set of standard RESTful endpoints for 
managing services. These endpoints are designed to be called by a service broker client, 
which is typically integrated into a platform, such as a PaaS or a Kubernetes cluster. 

The basic flow of the API is as follows: 

• A developer requests a service through a platform-specific client, such as a command-
line interface or a web UI. 

• The client sends a request to the service broker, which acts as an intermediary between 
the platform and the service provider. 

• The service broker communicates with the service provider to provision the requested 
service. 

• Once the service is provisioned, the broker sends a response to the client, which 
includes the necessary credentials and connection information for the developer to 
access the service. 

• The developer can then use the provided credentials to access the service and perform 
various operations, such as creating, reading, updating and deleting data. 

The Open Service Broker API supports a variety of service operations, such as provisioning, 
binding, and deprovisioning, which can be used to create, configure, and manage services in 
a platform-agnostic way. It can be integrated into Kubernetes in several ways. One possible 
approach is to use the Kubernetes Service Catalog (k8s SIG)4, which is a Kubernetes add-on 
that provides an implementation of the Open Service Broker API. The Service Catalog allows 
you to provision and manage services in a Kubernetes cluster by defining Custom Resource 
Definitions (CRDs) for services, plans, and bindings. Another approach is to use a Kubernetes 
Operator that is specifically designed to manage the lifecycle of services integrated with the 
Open Service Broker API. In summary, the Kubernetes Service Catalog provides an 
implementation of the Open Service Broker API, which makes it easy to integrate services into 
a Kubernetes cluster and manage them using Kubernetes constructs. 

OSBAPI can be used to automate the provisioning and management of services such as 
databases, message queues, and other types of back-end services. It can also be used to 

 
3 https://www.openservicebrokerapi.org/ 

4 https://github.com/kubernetes-retired/service-catalog. 
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integrate services from different providers, allowing developers to easily switch between 
different service providers without having to change the code of their applications. 

In summary, OSBAPI provides a standard way for cloud-native applications to discover, 
provision, and consume services, and to make it easy for developers to use and manage 
services in a platform-agnostic way (i.e., automation of service provisioning and 
management). However, it is limited to a single domain or cluster and may not include all the 
operations that a specific service provider may need. Moreover, it was made to deal with 
developers and to make them be able to automate DevOps operations inside the cluster 
where they are working on, allowing them to speed up the development process. Hence, it is 
not a real brokering system to deal with multiple domains as we would like to have in 
FLUIDOS; furthermore, it works on services level, meant as applications, and not on resource 
offering level (e.g., CPUs). 

Finally, at the time of writing we should mention that the Service Catalog addon defined, 
developed and supported by the Kubernetes SIG, useful for the integration of OSBAPI with 
Kubernetes environments, has been archived in May 2022 and it is no longer supported by 
the community. At the same time the OSBAPI project is now only supported for CloudFoundry 
environments, hence limiting the applicability of this project. 

The most notable pros and cons of the Open Service Broker API are listed below. 

5.5.1 Pro and cons 

Advantages 

• Standardization: OSBAPI provides a standard way for applications to discover, 
provision, and consume services, regardless of the underlying infrastructure or 
platform. This allows for the creation of a marketplace of services that can be easily 
discovered and consumed by developers. 

• Platform-agnostic: OSBAPI allows for the creation of services that can be consumed 
by multiple platforms, such as PaaS or Kubernetes clusters, without having to write 
platform-specific code. 

• Automation: OSBAPI enables the automation of service provisioning and 
management, which can save time and reduce the complexity of managing services. 

• Security and isolation: The single domain aspect of OSBAPI allows for better security 
and isolation of services and resources. 

Limitations 

● Limited to a single domain or cluster: Each instance of a service broker is scoped to a 
specific domain or cluster, and is only able to manage services within that domain or 
cluster. This can limit the ability to access services in other domains or clusters. 
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● Limited to a specific set of operations: OSBAPI defines a set of standard operations for 
managing services, but it may not include all the operations that a specific service 
provider may need. 

● Requires additional components: To use OSBAPI, additional components such as a 
service broker client and a service broker need to be integrated into the platform or 
cluster. 
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6 ARCHITECTURE 

6.1 TERMINOLOGY 

This section presents the main concepts with respect to the terminology used in this project, 
and their relationship with respect to the vanilla Kubernetes terminology. 

6.1.1 Kubernetes Node 

A Node is a worker machine in Kubernetes, which may be either a virtual or a physical 
machine, depending on the cluster. Each Node is managed by a control plane, which is 
(logically) unique across the entire Kubernetes clusters. A Node can host multiple pods, and 
the Kubernetes control plane automatically schedules pods on all available nodes, taking into 
account parameters such as the available resources (e.g., RAM, CPU) on each node, the 
availability of an already cached image, and more. 

Each Kubernetes Node runs at least two components: 

● Kubelet: process responsible for communication between the (centralized) Kubernetes 
control plane and the node itself; it manages the lifecycle of all the pods running on a 
machine. 

● Container runtime (e.g., Docker): component responsible for pulling the container image 
from a registry, unpacking the container, and running it. 

6.1.2 Kubernetes Cluster 

A Kubernetes Cluster is a set of nodes that run containerized applications, which are made by 
different cooperating microservices. A Kubernetes cluster can be set up on different 
environments, with very different characteristics and resources, starting from managed 
clusters in a big datacenter, to small clusters featuring a few physical servers in a telco edge, 
or to tiny clusters that include a few resource-limited end-user devices. 

A Kubernetes cluster consists of one master node and a number of worker nodes, ranging 
from a few devices, to some thousand servers. These nodes can either be physical computers 
or virtual machines, depending on the cluster. The master node controls the state of the 
cluster; for example, which microservices are running and their corresponding container 
images. The master node drives the scheduling process for all the running jobs, and it 
coordinates processes such as: 

● Scheduling and scaling applications 
● Maintaining a cluster’s state  
● Implementing updates 
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6.1.3 FLUIDOS Node 

A FLUIDOS Node is a unique computing environment, under the control of a single 
administrative entity (although different Nodes can be under the control of different 
administrative entities), composed of one or more machines and modeled with a common, 
extensible set of primitives that hide the underlying details (e.g., the physical topology), while 
maintaining the possibility to export the most significant distinctive features (e.g., the 
availability of specific services; peculiar HW capabilities).  Overall, A FLUIDOS node is 
orchestrated by a single Kubernetes control plane, and it can be composed of either a single 
device or a set of devices (e.g., a datacenter). Device homogeneity is desired in order to 
simplify the management (physical servers can be considered all equals, since they feature a 
similar amount of hardware resources), but it is not requested within a FLUIDOS node. In other 
words, a FLUIDOS node corresponds to a Kubernetes cluster. 

A FLUIDOS node includes a set of resources (e.g., computing, storage, networking, 
accelerators), software services (e.g., ready-to-go applications) that can be either leveraged 
locally or shared with other nodes. Furthermore, a FLUIDOS node features autonomous 
orchestration capabilities, i.e., (1) it accepts workload requests, (2) it runs the requested jobs 
on the administered resources (e.g., the participating servers), if application requirements and 
system security policies are satisfied, and (3) it features a homogeneous set of policies when 
interacting with other nodes. 

6.1.4 FLUIDOS Domain 

A FLUIDOS Domain is the set of FLUIDOS Nodes belonging to the same administrative 
domain, which have established peering relationships, and in which one of the existing 
FLUIDOS nodes is selected as master, called FLUIDOS SuperNode. A FLUIDOS domain 
leverages the same interfaces of FLUIDOS nodes to expose their aggregated information, 
enabling hierarchical interactions among different domains. 

6.1.5 FLUIDOS SuperNode 

A FLUIDOS Supernode is a FLUIDOS node that acts as a “master” for an entire FLUIDOS 
domain, becoming the entity that can establish peering relationships on behalf of all nodes 
of a FLUIDOS domain toward a third-party Node, and acting as “aggregator” of resources 
and services for all the entire FLUIDOS Domain. 

6.1.6 FLUIDOS Cluster 

A FLUIDOS Cluster is a virtual space spanning across a set of FLUIDOS nodes (also belonging 
to different administrative domains), in which all Kubernetes objects (e.g., pods, services, 
secrets, configmaps, etc.) are available such as in a traditional physical cluster. This enables 
running objects (e.g., microservices) to have direct access to the portion of computing, 
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storage, network resources and services assigned to the virtual cluster by each participating 
FLUIDOS node, without boundaries (technical or administrative). 

6.2 INTERACTIONS AMONG FLUIDOS NODES     

FLUIDOS nodes interact with each other according to two dimensions, horizontal and vertical, 
building a virtual continuum that can be completely decentralized, without any single point 
of control. In the following, we present an initial definition of the high-level concepts inherent 
with horizontal and vertical interactions, while the detailed aspects will be explored in WP3. 

 

Figure 14. Horizontal and vertical interactions among FLUIDOS nodes. 

6.2.1 Horizontal interactions  

The horizontal (east-west) interaction enables the creation of a fluid domain among peers, 
which can share their resources and services, or part of them, based upon a set of policies 
(e.g., enable sharing from node X but not from node Y). Horizontal interactions are carried 
out according to a peer-to-peer paradigm, hence without the need for any centralized entity 
that controls and supervises the entire process. Applications started on a FLUIDOS node can 
leverage any resource, either local or remote, available in the new virtual space. The FLUIDOS 
orchestrator is responsible for determining the best location for each component based on (i) 
the features requested through the intent-based API (e.g., computing power, maximum 
latency between components and toward end users, resiliency properties, number and 
location of replicas, reduction of energy and costs or carbon, etc) and (ii) the additional 
policies set for the creation of the virtual space and/or the offloading of any component (e.g., 
no offloading on un-trusted domains for critical components). Each FLUIDOS node can 
dynamically create its own fluid domain, with an unlimited number of peers, if they accept to 
peer and share resources; peering can be turned on/off at will, with minimal overhead. 

The establishment of a peering relationship is a multi-step process, which mainly involves the 
following phases: (i) discovery, allowing to discover about the existence of other peering 
candidates, (ii) negotiation, enabling FLUIDOS nodes to issue requests for resources and/or 
services to other nodes, which in turn advertise their available capabilities, (iii) reservation and 
contract signing, formalizing the acceptance of an offer from a FLUIDOS node, and possibly 
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agreeing on compensations, (iv) peering, establishing the virtual fabrics required to enable 
seamless workload offloading to remote nodes (e.g., concerning networking, storage, …), (v) 
usage, leveraging the resources and services acquired by other FLUIDOS nodes to satisfy 
service requests and (vi) depeering, tearing down the previously established computing 
continuum abstractions, which are no longer necessary. The different steps briefly outlined 
above will be analyzed in a greater detail when discussing the different FLUIDOS components. 

 

Figure 15. Horizontal and vertical interactions in FLUIDOS. 

6.2.2 Vertical Interactions 

The vertical (north/south) interaction introduces new concepts such as aggregation and 
hierarchical scaling into the picture. A fluid domain can be created by a FLUIDOS 
“supernode” that aggregates multiple nodes, hence exporting a virtual space that is the union 
of the resources (and services, objects) of the composing nodes.5 The supernode-backed fluid 
domain is created with the same mechanisms already in place for the horizontal interactions; 
individual nodes are still in control of their own resources (ownership principle) and can 
withdraw them (if allowed by the signed contract). In addition, a special “tethered mode”, 
available upon explicit configuration, allows individual nodes to be completely controlled by 
the supernode, giving up their local intelligence (and thus autonomy and ownership) in 
exchange for a simplified control plane. This mechanism, for instance, would be used to bring 
highly resource-constrained devices, such as micro-controllers, into the FLUIDOS ecosystem.  

 
5 Being an aggregation of multiple FLUIDOS nodes, a supernode possibly comprises a heterogeneous 
environment, under the control of multiple administrative entities. Still, it exposes the standard FLUIDOS node 
interfaces to hide these differences, presenting an abstract and aggregated view of the available resources and 
services, while seamlessly taking care of propagating workload execution to the appropriate FLUIDOS node, 
depending on the intent-driven specifications and additional policies. 
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The aggregation paradigm can be applied recursively, with “supernodes” becoming part of 
a bigger “hyper-fluid domain”, managed by an “hypernode” (or controlled, if the “tethered 
mode” is enabled), for a theoretically endless number of hierarchical levels. This provides the 
foundation for the hierarchical scaling property of FLUIDOS (recursive hierarchical 
architecture, from a single device to domains of domains). In this respect, the north/south 
interface, which enables interactions with different nodes (either local devices, clusters or 
other FLUIDOS “supernodes”) all featuring the same interface, will be backed by novel 
resource aggregation algorithms that can aggregate the resources of each single node 
(normal, super, etc) in a scalable way. A possible example is shown in the figure above, with 
an enterprise sharing and aggregating at multiple levels within its ICT infrastructure, while 
establishing three different (direct) peering with external cloud providers and business 
partners. 

Finally, a FLUIDOS Broker is an aggregation, consolidation and brokering (i.e., reselling) point 
that supports also interactions between multiple administrative domains, whose duties 
include the capability to (1) observe the resources offered by many domains and the 
associated performance when involved in task offloading; (2) to monitor (and predict) the 
quality of network connections; (3) to suggest the “best node” when asked for an offloading 
request. However, given that super/hyper nodes include brokering activities albeit limited 
within the boundaries of a single admin domain, FLUIDOS will reuse for the above nodes the 
great part of algorithms (and software) developed for the Broker, assigning to this component 
a major role in the architecture. 

6.3 THE FLUIDOS SOFTWARE STACK 

The FLUIDOS software stack is composed of four main layers, graphically depicted in Figure 
16. 

 

Figure 16. The FLUIDOS software stack. 

● Vanilla operating systems, which abstract the underlying hardware capabilities. There are 
strong technical and cultural reasons for having multiple operating systems on real devices, 
although many of them are Linux-based: necessity to support a given set of features (e.g., 
real-time processing), widespread adoption within a given community (e.g., Container OS), 
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hardware requirements (e.g., low-cost devices), user constraints (e.g., usability in 
consumer-oriented electronics or smartphones). 

● Kubernetes, which introduces a uniform layer on top of different infrastructures, regardless 
of whether they are end-user devices or larger cloud/edge data centers. Accounting for 
heterogeneous characteristics, Kubernetes distributions are available in different flavors: 
full-fledged Kubernetes (i.e., K8s) for small/large DCs, other distributions (e.g., Microk8s, 
K3s, KubeEdge) that target individual devices or small swarms of devices at the edge of 
the network. Kubernetes provides the minimum common denominator for FLUIDOS to 
build its services upon, leveraging its user-oriented primitives (e.g., replicas, deployments, 
stateful sets, services, etc.) that enable the deployment of user applications independently 
of the current distribution (e.g., K8s vs K3s), the size of the DC/node, and other 
characteristics (e.g., CPU architecture, i.e., Intel vs. ARM). 

● Liqo, which brings in a multi-cluster abstraction on top of Kubernetes, enabling seamless 
offloading of workloads from one cluster to another. At the same time, it handles all the 
additional aspects required to make this process transparent from both the users and the 
applications point of view, including resource negotiation, cross-cluster network fabric 
setup, and synchronization of the appropriate artifacts. Overall, Liqo provides the 
foundation to enable the “resource virtualization” layer, exposing at the same time 
appropriate extension hooks to further enrich it with domain specific capabilities.  

● FLUIDOS, which implements the full Meta Operating System capabilities. It builds on top, 
and it leverages the extension hooks made available by the underlying layers to enable the 
most advanced and domain specific capabilities. 

The overall software stack shall acknowledge and support the possible usage of additional 
middleware frameworks widely adopted in certain communities, such as ROS and MQTT. 

6.4 FLUIDOS NODE ARCHITECTURE 

A FLUIDOS node builds on top of Kubernetes, which takes care of abstracting the underlying 
(physical) resources and capabilities in a uniform way, no matter whether dealing with single 
devices or full-fledged clusters (and the actual operating system) while providing at the same 
time standard interfaces for their consumption. Specifically, it properly extends Kubernetes 
with new control logic responsible for handling the different node to node interactions, as 
well as to enable the specification of advanced policies and intents (e.g., to constrain 
application execution), which are currently not understood by the orchestrator. 

Given this precondition, the main architectural components of a FLUIDOS node are depicted 
in Figure 17, and converge around the Node Orchestrator and the Available Resources 
database. The former is in charge of orchestrating service requests, either on the local node 
or on remote nodes of the same fluid domain, coordinate all the interactions with local 
components (e.g., local scheduler) and remote nodes (e.g., to set up the computing / network 
/ storage / service fabrics), and make sure that the service behaves as expected (e.g., honoring 
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trust and security relationships). The latter keeps up-to-date information about resources and 
services available either locally or acquired from remote nodes, following the resource 
negotiation and acquisition process. Additional modules (and their companion 
communication interfaces), that are described in the following sub-sections, are required to 
handle the discovery of other FLUIDOS nodes and carry out the resource negotiation process, 
to monitor the state of the virtual infrastructure and to make sure that offloaded 
workloads/services behave as expected both in terms of security and negotiated SLAs, to take 
care of security and privacy issues (e.g., isolation), and to create the virtual continuum within 
the fluid space. The tasks handled by each module are detailed in the following. 

 

Figure 17. FLUIDOS logical architecture (see Appendix for full-size representation). 

6.4.1 Discovery Manager 

The discovery manager is the module responsible for the discovery of other FLUIDOS nodes, 
producing as output a local database of feasible peering candidates.  Specifically, each 
peering candidate is characterized by a globally unique identifier, the set of parameters 
necessary during the peering and resource acquisition phase (e.g., target network endpoints, 
…), as well as a set of distinguishing features (e.g., geographical location, whether it is 
available to sell computing resources, specific hardware functionalities or software services), 
and possibly including pricing/billing models. These features are expected to be exposed at 
a high level (e.g., through generic key/value labels); they enable both an initial policy driven 
filtering (i.e., excluding undesired nodes from the list of peering candidates) and a priori 
filtering and ranking during the resource acquisition phase, while leaving that phase to deal 
with the negotiation in terms of quantities, cost, and more detailed aspects. More specifically, 
filtering and ranking might be based on different parameters, either based on previous 
experience or attached to the node during discovery, including reputation, availability to offer 
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certain categories of resources and services, and more (see Appendix B for a complete 
example of Discovery Workflow). 

Multiple discovery approaches are foreseen to account for different requirements, including 
and not limited to: 

● FLUIDOS catalogs, i.e., directories of FLUIDOS nodes (a catalog might be public or require 
proper authentication to be queried/joined). Each node can subscribe to multiple catalogs, 
hence discovering about all other nodes therein listed, as well as announce itself in multiple 
catalogs. Additionally, catalogs possibly represent trustworthy anchors to gather and 
expose information concerning the reputation of a given node in the specific domain, 
based on its historical behavior and the feedback received from its peers.  

● Multicast DNS, enabling seamless on-LAN clustering of independent devices. 
● Manual configuration, specifying the appropriate parameters of the target peering 

candidate, as a fallback approach if none of the others is suitable in the given scenario. 

The entire process is driven by a set of user-specified policies, which can be divided in:  

● Outgoing: specify whether the current node should be announced by means of a certain 
approach or not (e.g., only through a subset of the known catalogs). 

● Incoming: filter out the peers announced through a subset of approaches, those that do 
not expose the desired capabilities (e.g., I’m only interested in European nodes available 
to sell computing resources), or do not match the desired trust level (based on past 
experience and peers’ ratings, as computed by the privacy and security manager). 

The overall discovery process is summarized in the figure below. 
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Figure 18. FLUIDOS discovery process. 
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Figure 19. FLUIDOS discovery workflow. 

6.4.2 Node Orchestrator 

The node orchestrator is the FLUIDOS module responsible for the orchestration of the service 
requests, either on the local node, or offloading them to a remote FLUIDOS node, based on 
the current snapshot of the available resources database. Additionally, it interacts with and 
coordinates other components, mainly the resource acquisition manager, to trigger the 
acquisition of new resources and the setup of the appropriate network and storage fabrics 
enabling transparent execution continuum, in case already available ones are not sufficient to 
satisfy the incoming request. 
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Service requests are specified, either by the DevOps users or propagated by another 
FLUIDOS node, through an intent-driven API; i.e., describing what the result should be, rather 
than how it should be achieved, hence facilitating service composition and QoS specification, 
while hiding at the same time low level details. Hence, each request is enriched with a set of 
soft (i.e., desired) and hard (i.e., mandatory) constraints expressed in terms of high-level 
service characteristics (e.g., geographical location, maximum latency, need for specialized 
hardware, HA guarantees, cost, …), rather than low-level implementation details (e.g., 
manually constrain the workloads to a specific subset of servers). Soft constraints are 
associated with priorities, to disambiguate possible conflicting requirements, and favor the 
most relevant ones (e.g., in case reducing latency implies at the same time an increase in the 
execution costs, and both should be minimized). It is worth mentioning that service 
characteristics involve both aspects directly under the control of a FLUIDOS node (e.g., the 
availability of certain hardware and its performance), either local or remote, and of their 
interconnection (e.g., concerning the network). The telemetry services are responsible for 
retrieving the information required to convert intents into actual scheduling decisions. The 
specification of the intent driven API, as well as the decision about the scheduling granularity 
(i.e., per-application or per-microservice) will be carried out as part of WP4. 

Once a service request is received, the node orchestrator takes care of selecting the target 
FLUIDOS node for its execution (possibly the current node itself), based on the specified 
constraints. To this end, it reads the available resources database, which enumerates the list 
of currently available resources, and their characteristics. This database is fed by the local 
resource manager, which lists the resources (and services) exposed by the node itself (in the 
FLUIDOS sense, it can correspond to an entire Kubernetes cluster), as well as contains those 
previously acquired from other nodes, as discussed in the resource acquisition manager 
section. This list is possibly additionally filtered based on past experience reports, as 
contained in the ratings and metrics database. The definition of an appropriate scheduling 
algorithm will be part of WP4, while additional, domain-specific algorithms will be developed 
in the corresponding WP (e.g., WP6 for an energy-aware solution) (see Appendix C for the 
complete service request workflow in case resources are already available). 

In case no match is found, the node orchestrator triggers the resource acquisition module, 
which starts querying the list of peering candidates with the objective to acquire the necessary 
resources. Eventually, either the node orchestrator gives up, signaling the impossibility of 
finding a suitable FLUIDOS node for the workload execution, or it outputs the target 
execution node. If it corresponds to a remote one, the service request is offloaded through 
the remote service handler, recursively triggering the same orchestration process (a loop 
resolution algorithm is foreseen to prevent the occurrence of scheduling loops, causing the 
workload to never be scheduled on a real node, in case multiple recursion steps are allowed). 
Alternatively, the workload is fed to the local scheduler (either the vanilla Kubernetes one or 
an enriched version featuring domain-specific knowledge), delegating to it the selection of 
the target server it will be actually executed on (see Appendix D for the complete service 
request workflow in case resources are not yet available). 
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Figure 20. FLUIDOS service requests. 

6.4.3 Resource Acquisition Manager 

The resource acquisition manager is the FLUIDOS module responsible for the negotiation 
process performed to acquire resources and services from remote FLUIDOS nodes. It can be 
triggered either proactively, based on policies, to ensure that a given amount of resources 
(with certain characteristics) is always available to fulfill foreseen future requests, or by the 
node orchestrator, reacting to the lack of matching resources to satisfy a service request. 

Whatever the case, the module reads the peering candidates database, appropriately filtered 
and ranked based on the service characteristics (e.g., keep only those offering resources in a 
certain country, sorted by a past experience-driven rating), and then sends a resource request 
(through the resource importer module) message to a shortlist of selected candidates, 
enumerating the amount of requested capabilities (e.g., 10 CPU cores, 25GB of RAM and a 
TPM) and possibly a set of related intent-driven characterizing constraints. New resources 
might be requested regardless of whether the target node is already offering some resources 
or not. 

Resource requests are received by the resource exporter module on the counterpart cluster, 
which elaborates them and, based on the content of the available resources database and 
user-defined policies, decides whether to formulate a corresponding resource offer or deny 
the request (e.g., since it cannot be satisfied, or due to a lack of trust). A resource offer might 
exactly match the request, include only a subset of the requested resources (e.g., based on 
current availability, or due to a limit in the maximum amount that can be offered to remote 
nodes), or include a superset of the requested resources (e.g., since they are only offered in 
pre-defined size blocks). Additionally, it specifies the cost, as well as additional constraints 
associated with the offered resources (e.g., whether they have been reserved until 
acceptance, and for how much time).  
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Different business models might be adopted to fulfill different contexts; for the sake of 
exemplification, we consider here a reserved, and a pay-per-use approach. In the former, 
upon acceptance, the negotiated resources are reserved, thus billed, to a given FLUIDOS 
node (regardless of whether they are consumed). Alternatively, the pay-per-use model 
enables higher dynamism, with a node paying only the resources effectively used in each 
moment, although without the guarantee of their continuous availability (e.g., due to resource 
overcommitment, and a temporary burst of requests by multiple nodes). It is worth 
mentioning that, in hierarchical scenarios (i.e., involving supernodes and hypernodes), a 
recursive approach might be desired, thus allowing the target cluster to trigger in turn the 
resource acquisition manager, attempting to acquire the resources to be offered from other 
clusters, and effectively playing the role of a reseller. Yet, in this case, a loop resolution 
algorithm is of utmost importance to prevent the possibility of (even indirectly) attempting to 
acquire resources from a FLUIDOS node already part of the chain. 

At this point, the originating resource acquisition manager collects (through the resource 
importer module) the resulting set of resource offers, it filters and ranks them based on user-
defined policies (e.g., prefer the ones exactly matching the request, exclude those costing 
more than a given threshold, …), eventually deciding which ones to accept. Then, the contract 
manager module has to confirm the acceptance of the selected resource offers, possibly 
leveraging smart contracts to formalize the exchange in terms of money and 
resources/services, and the acquired resources are added to the available resources 
database. If no matching offer is received, the process can optionally continue sending new 
requests to the next subset of peering candidates, until the list has been completely explored. 

The resource acquisition process is summarized in the figure below, whereas the complete 
resource acquisition workflow is in the Appendix E. 
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Figure 21. FLUIDOS resource acquisition process. 
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Figure 22. FLUIDOS Service Request workflow (resources already available). 
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Figure 23. FLUIDOS Service Request workflow (resources not yet available). 
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Figure 24. FLUIDOS Resource Acquisition workflow. 

6.4.4 Virtual Fabric Manager 

The virtual fabric manager is the FLUIDOS component in charge of establishing the computing 
continuum abstractions to enable the seamless execution of workloads spread across multiple 
nodes. Specifically, it takes action once a resource offer is accepted by the resource 
acquisition manager, and appropriately sets up the virtual node abstraction, along with the 
network and storage fabrics through the interaction with the remote node. Symmetrically, it 
takes care of tearing down the virtual fabric once resources are no longer acquired from a 
given node. This task is fulfilled by Liqo, a project which extends the Kubernetes abstractions 
to multi-cluster scenarios, considering three main directions: 
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● Virtual node: abstracting a remote cluster (i.e., FLUIDOS node) as a local Kubernetes node, 
performing at the same time the synchronization of the necessary artifacts (e.g., 
configurations, service endpoints, …) to enable the seamless remote execution of 
unmodified workloads. 

● Network fabric: ensuring that correlated workloads spread across multiple FLUIDOS nodes 
can transparently and securely communicate among each other, as if they were located on 
the same hosting node. The network fabric automatically manages the possible conflicts 
(e.g., in terms of overlapping addressing spaces) which inevitably arise in highly dynamic 
and uncoordinated scenarios. 

● Storage fabric: enabling a data continuum to allow workloads to attach data lakes on the 
hosting FLUIDOS node. Following the data gravity approach, it prevents the need for 
expensive migration of data across FLUIDOS nodes, as well as to comply with law 
regulations (e.g., GDPR), ensuring that data is only stored and accessed in the desired 
locations. 

6.4.5 Privacy and Security Manager 

The privacy and security manager is the FLUIDOS module, investigated and detailed in WP5, 
in charge of guaranteeing the security of the different parties involved in the resource 
continuum, and it is intertwined with all the other different processes. This task is additionally 
fulfilled through the interaction with the trust and security agent, a trust anchor part of each 
FLUIDOS node that certifies the correctness of predefined operations. 

Node discovery: it ensures with appropriate proof mechanisms the trustworthiness of the 
distinguishing features advertised by remote nodes, so that they can be reliably leveraged 
upon for filtering and ranking purposes. Each FLUIDOS node is also possibly associated with 
a reputation value, built from the collective past experience of the entire continuum 
components, and based on its behavior (e.g., in terms of workloads execution), as well as the 
adherence to the offered capabilities. 

Resource acquisition: the rating and metrics database fed by this module is leveraged to filter 
and rank the list of feasible peering candidates based on previous experience, both collected 
directly by the local node and referring to a global reputation value. Additionally, it plays a 
role in proving that the offered capabilities are actually available on the host node.  

With respect to the execution of the remote workload, the Privacy and Security Manager must 
guarantee the following properties: 

• Remote workload execution (host perspective): the hosting FLUIDOS node is 
guaranteed that offloaded workloads do not harm the local system, nor they attempt 
to perform malicious actions towards external domains. This is achieved by 
appropriately confining one or more related workloads in a dedicated sandbox (e.g., 
a container), thus configuring the appropriate limitations in terms of resource 
consumption (i.e., to prevent using resources without a previous agreement), 
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operations that can be performed (e.g., system call subsets that can be invoked), and 
network connectivity (i.e., forbidding hosted workloads from accessing unauthorized 
services). In addition, measures are taken to prevent side-channel attacks aimed at 
trying to infer confidential information about the containerized applications. Finally, it 
supervises the provisioning of additional mechanisms (e.g., TPM, secure storage, …) 
possibly agreed upon during the resource acquisition phase and requested by the 
current workloads through the intent-based API. 

• Remote workload execution (guest perspective): the guest FLUIDOS node should be 
provided with additional guarantees that offloaded workloads are being executed 
correctly (i.e., without being tampered with), as well as that the telemetry data 
forwarded by the hosting node is correct (e.g., about resources’ usage). These pieces 
of information are then leveraged by this module to enrich the reputation value about 
the specific FLUIDOS node, stored into the ratings and metrics database, later queried 
during subsequent resource acquisition phases. 

Finally, the Privacy and Security Manager is responsible for the dynamic selection and 
configuration of security services, what is usually called Security Orchestration. To this 
account, it interacts with the local orchestrator (e.g., to deploy decoys) and the telemetry 
service (to gather information about the status of the infrastructure and existing services). 

6.4.6 Telemetry Service 

The telemetry service is the FLUIDOS component responsible for the monitoring of the 
infrastructure (e.g., actual CPU load, memory, network, as well as possibly more detailed 
indexes such as memory page faults), including the collection of all the observability 
parameters key to enforce and verify the satisfaction of the workload requirements expressed 
through the intent-based API.  

It consists of a local telemetry service, responsible for the performance of the local FLUIDOS 
node, which is additionally leveraged by the local resource manager to derive the locally 
available resources. The remote telemetry service, on the other hand, exposes to each peered 
node the aggregated information concerning the guest workloads therein hosted, thus 
enabling for the monitoring of their execution, and the verification that negotiated SLAs are 
respected. In this context, the remote trust and security agent plays a key role to prevent 
remote nodes from cheating about application performance. The outcome of the monitoring 
process enriches the ratings and metrics database, hence driving subsequent resource 
acquisition processes. 

6.4.7 Cost Manager 

The Cost Manager is the FLUIDOS module responsible for evaluating the burdens of carrying 
out a computational load on a node. Hereby, the burdens can be both monetary or non-
monetary (in particular environmental). Three cost functions have been identified so far: 
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• Operational monetary 

• Environmental, in particular carbon emissions 

• HW production monetary  

However, the scheduler related to the monetary costs of HW production might be substituted 
with the results of a study on a new and more dynamic DC architecture that is being carried 
out by IBM. This new architecture could bring about monetary and environmental savings and 
therefore serve as an indirect optimization tool for HW-related costs. Contacts to the 
OpenFabrics Alliance within the consortium can bring synergies on this task.  

Whether all three or just the first two of these cost functions will be implemented, it is certain 
that there will be more than a single cost type. The cost function thus needs to be generic 
and parameterizable.  

The environmental scheduler will most likely be implemented among FLUIDOS nodes (i.e., 
Kubernetes Clusters), as otherwise working within Kubernetes internals could get quite 
challenging. The manager will nevertheless have access to cluster internals to compute and 
publish its cost function. 

The cost manager is so far foreseen to synergize with the local resource manager. This is 
because the algorithm of the environmental scheduler must closely monitor the resources and 
sensors on the given machine as well as have access to the carbon intensity of the local 
electricity grid of that machine. 

6.5 FLUIDOS COMPONENTS STATUS OVERVIEW 

The figure below summarizes the status of the building blocks envisioned for the FLUIDOS 
architecture, highlighting those already available in Liqo, the ones that are present in an initial 
version, but require deep customization and extension to fulfill the FLUIDOS requirements, 
as well as the ones expected to be designed and implemented from scratch as part of 
FLUIDOS. 
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Figure 25. FLUIDOS component status overview. 
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7 ADDITIONAL COMPONENTS: CATALOG 
& BROKER 

While the architecture defined in the previous Section is enough to build, maintain and 
operate a FLUIDOS domain, some new components (namely, catalogs, brokers) may be 
helpful to increase the value of the FLUIDOS solution, as well as adding new functionalities 
and/or (optionally) simplifying some of its operations in some given conditions. 

This section presents the main concepts and the models of resource brokering in Kubernetes, 
giving a more precise high-level definition of the roles and functions involved in the brokering 
process. Firstly, we define the concepts of Multi-Tenant and Multi-Cloud. Then we go through 
some user stories and use cases for resource brokering in cloud services federations, focusing 
on some real scenarios, proceeding to derive an understanding of possible added-value 
services, and finally devise Liqo-based solutions to offer these services, dwelling in particular 
on the “Catalog” model which will be studied deeply in the following. 

7.1 MULTI-TENANCY AND MULTI-CLOUD 

To provide a common ground for our studies, we report here the definition of Multi-Tenancy 
and Multi-Cloud. 

Multi-tenant architecture 

A Multi-tenant architecture represents a single software instance that serves multiple and 
heterogeneous customers. Each customer is called a tenant, who has the possibility to act in 
a restricted functional domain. 

This type of architecture is able to work because each tenant is physically integrated together 
with all the others, but is logically separated from them. This concept has been adopted above 
all in Cloud adoption and is used most with cloud computing, in particular in order to allow 
each tenant’s data to be separated from each other. This has therefore given the possibility, 
for example, to use the same server to host multiple users, and ideally provide them a secure 
space to store data. 

Of course, this approach has brought several advantages in terms of costs and scalability, but 
it has also introduced some disadvantages. In particular, it is clear to imagine how the general 
complexity of development has grown considerably, especially from a security and resource 
management point of view.  

MultiCloud 
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The concept of Multi-Cloud, sometimes also used in the sense of Hybrid Cloud, is the 
common background. It simply means a company, or more generally an enterprise, which 
during the deployment process makes use of various heterogeneous cloud providers, 
including On-Premise, instead of applying a one vendor business approach. This allows the 
company not only to be able to differentiate the services offered and therefore improve their 
reliability and redundancy, but also reduces vendor lock-in, thus impacting the 
competitiveness of the markets and potentially also costs. If we imagine all this in a 
contemporary context, in which the control and sovereignty of data plays a fundamental role 
both at a geopolitical level and at a strategic level in the competition between companies, it 
makes it easy to understand how this principle is becoming more and more fundamental in 
the approach to the modern Cloud. 

7.2 USER STORIES 

The need for resource brokers arises from creating large-scale Kubernetes clusters for the 
purpose of sharing computing resources. Brokers address some shortcomings of the peer-to-
peer, horizontal model in scaling to large numbers of users: as the number of providers 
increases, it becomes increasingly harder to have full visibility over the resources and 
organizations present on the network. Vice versa, each provider may no longer place the same 
level of trust in consumers as in a smaller network with well-known participants. Furthermore, 
even if each party has full visibility over the global resources, an "overseeing organization" 
may be able to optimize the distribution of workloads using proprietary metrics and the 
knowledge of each customer’s needs. 

From this consideration we can contextualize the broker as a commercial operator in the niche 
of enabling multi-cloud environments, that provides added-value services to large, pre-
existing federations. As such, the broker can additionally be understood in the GAIA-X 
framework as a participant that fulfills Federation Services: we will see that our work addresses 
existing GAIA-X Federation Services like Access Management, but also expands the notion 
of Federated Catalogues to include IaaS offerings. 

In this respect, TOP-IX (Torino Piemonte Internet eXchange), the Internet Exchange Point for 
north-western Italy, is seeking to expand its business in the direction of being a neutral, 
trusted intermediary to data exchange and cloud computing, extending its role consistently 
with the historical nature of IXPs. 

One of the most relevant projects that we worked on is Structura-X6: this project was born as 
the lighthouse project of Gaia-X, the European cloud initiative. The goal of Structura-X is to 
create a federated infrastructure that will include both cloud providers and IXPs, enabling a 
trustful environment for the exchange of data and services. The idea is to create an ecosystem 

 
6 https://www.top-ix.org/en/2021/12/20/structura-x-lighthouse-project-for-european-cloud-infrastructure/. 
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capable of competing with the hyperscalers, both in terms of networking and in terms of 
computing layer. The first demo of the project was presented in Paris in November during the 
Gaia-X Summit 2022. On this occasion, we presented the first version of the Structura-X 
architecture, and also of the project studied, developed and implemented in this work. 

7.3 GENERIC SCENARIOS 

Our research shows that there are several different scenarios that address different needs. We 
distinguish between B2C and B2B and between the Provider and Customer (respectively who 
provides the resources/services and who uses them). 

7.3.1 B2C 

7.3.1.1 Scenario 1 – Discovery 

There are a multitude of cloud operators, each offering different features and having their 
own clusters. The “cloud market” is a sprawl with little discoverability integrated into the 
network. 

• Customer story: I want to discover what providers are available, so that I can choose 
the one that best fits my needs. 

• Provider story: I want to advertise my resources to potential customers in a way that is 
integrated with the federation. 

7.3.1.2 Scenario 2 - Metrics and certification 

There are many more cloud operators, to the point that it is infeasible or undesirable for a 
customer to choose the optimal one. Furthermore, some metrics of interest (e.g., latency) may 
not be available to the user, or may be self-certified. 

• Customer story: I want to choose the optimal cluster, but I do not have the time/data 
to do it myself.  

• Broker story: I want to certify metrics like latency and uptime, so that I provide a value-
added service. 

• Provider story: I want to advertise my resources, and compete with other providers 
with certified, reliable metrics. 

7.3.1.3 Scenario 3 - Data sovereignty 

There are several organizations that want to enable access and computation over their data 
while retaining control over it. 
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• Customer story: I want to run computations over sensitive data (e.g., healthcare 
databases). 

• Provider story: I want to make my data available, but I also want to make sure it is in 
safe hands and in compliance with regulations. 

• Broker story: I want to certify customers and workloads, so that I provide a value-added 
service. 

7.3.2 B2B 

7.3.2.1 Scenario 1 – Competitiveness 

There are several small cloud providers that are individually not competitive with larger 
players. 

• Customer story: I want to access a large amount of computing resources. 

• Provider 1 story: I want to join forces with other providers to enable a larger, 
aggregated commercial offering. 

• Provider 2 story: I want to increase my visibility in the cloud market to compete with 
bigger players and engage new customers. 

7.3.2.2 Scenario 2 - Service offering extension 

There are several cloud providers that want to extend their service offering on demand 
without investing to create a suitable proprietary infrastructure and/or without losing potential 
customers. 

• Customer story: I need a set of specific services not entirely offered by my cloud 
provider. 

• Provider 1 story: I want to offer to my customers certain services through my 
infrastructure by engaging them on demand from other vendors. 

• Provider 2 story: I want to increase my business by providing directly to other vendors 
some service offers, exploiting infrastructural resources that would be wasted. 

7.3.2.3 Scenario 3 - GDPR Data compliance 

There is data that, according to GDPR, needs to be stored in a specific geographical location 
compliant with the rule, or that, for some reasons, cannot be taken outside some political or 
geographical boundaries. 

• Customer story: I want to store my data in a place compliant with certain rules and 
simultaneously access it from other services hosted in a separate infrastructure of the 
same cloud provider. 
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• Provider 1 story: I want to offer to my customers a data space service that respects 
their needs joining an IaaS offer provided by another vendor, thus guaranteeing them 
a continuity of service. 

• Provider 2 story: I want to increase my business providing to other vendors some 
specific IaaS GDPR compliant offers. 

7.4 REAL SCENARIOS 

7.4.1 Gaia-X 

Gaia-X is a project reportedly working on the development of a federation of data 
infrastructure and service providers for Europe to ensure European digital sovereignty. It 
seeks to create a proposal for the next generation of data infrastructure for Europe, as well as 
foster the digital sovereignty of European cloud service users. It is reportedly based on 
European values of transparency, openness, data protection, and security. To accomplish this, 
it hopes to specify common requirements for a European data infrastructure and develop a 
reference implementation. 

7.4.2 Structura-X 

A lighthouse project for European cloud infrastructure endeavors to enable existing Cloud 
Service and Infrastructure Providers (CSP) data and infrastructure services to be Gaia-X 
certifiable. The goal is to create an ecosystem of independent CSPs, orchestrated by a shared 
layer of federation certification and labeling services based on Distributed Ledger Technology 
(DLT). The first milestone on the Structura-X project is to provide and certify Infrastructure 
Service Offerings against the definitions of the Gaia-X Trust Framework to provide 
Transparency and Trust to all participants. 

7.5 MODEL AND USE-CASES 

After analyzing the possible scenarios, it is now clear how the existence of a third entity, the 
broker, is important and necessary. It acts as a centralized binder between the various subjects 
taken into consideration. From the user stories we can therefore develop, based on the role 
and the functionalities they will cover, at least three possible brokering solutions, which are 
mainly distinguished by the wideness of control they have in the management of the 
relationships between Providers and/or Customers. 

These correspond to three different typologies and roles that are mostly independent with 
one another, which need to be developed into three software components: 
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• The Catalog: this is represented by an endpoint that customers and providers can 
browse and query. The main role is that of advertisement and discovery, both from 
the point of view of the individual subjects existing in the federation and of the services 
offered and made available within the same. The goal is therefore to rely on broker to 
be informed of what clusters are on the network, what are their features and resources, 
and possibly other information (e.g., a trusted estimate of their uptime or latency). 
Thanks to this broker all the subjects can join available offers and establish new 
interconnections on demand. Each interconnection is completely independent from 
the broker, it is based on a peer-to-peer model, thus keeping the overall ecosystem 
completely decentralized by eliminating the possibility that the broker may somehow 
be a single point of failure. 

• The Orchestrator: an active component that is in charge only of scheduling computing 
resources according to defined policies. This implies a well-defined splitting between 
control planes, up to the orchestrator, with data planes, demanded to the involved 
customers. So, users rely on brokers to orchestrate their workloads, either because 
they do not want to deal with the complexity of orchestration (for an extreme example, 
a customer may not even use Kubernetes, instead deploying Helm charts from the 
broker) or because the broker has access to proprietary information that can provide 
for an optimal orchestration. This process can also go the other way: providers can 
require customers to go through a trusted orchestrator that acts as a security gateway 
to inspect the users’ identities or their workloads. 

• The Aggregator: Unlike the previous two, this broker is completely opaque, acting as 
a single virtual cluster, in charge of totally managing control and data plane of the 
clusters below him. Providers rely on brokers to present their resources and those of 
their partners in aggregated form, creating a commercial offering that can compete 
with larger and more established providers. We can identify this broker as a 
middleman that presents a unified view of resources. 

7.6 CATALOG 

Now that we have a clearer picture of our design goals, let us understand how the standard 
Kubernetes resources and the Liqo paradigm can be used to accomplish these tasks, and how 
they were extended. We note that much of the functionality in the "peer-to-peer version" of 
Liqo can be reused to a large extent, at least for a proof of concept. The only parts that require 
substantial changes are the resource enforcement for the management of multi-tenant 
peerings and the customization of the peering resource reservation in such a way as to bypass 
the standard process in which Liqo calculates and allocates resources. 

At the functional level, a catalog needs to receive peering credentials and the commercial 
offers of each provider cluster, store and aggregate them, and send the full list to each one 
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that wants to browse the catalog when a query is issued. The aspect of peering credentials is 
arguably simpler. 

 

Figure 26. Catalog example. 

Peering takes place over IP with an optional authentication step based on a token. As such, it 
is sufficient for a cluster to know the provider’s IP address, its cluster ID, and its authentication 
token. With this information the provider/customer can run Liqo peering command to 
establish the connection, and Liqo will proceed to do the rest. The representation of cluster 
resources is more complex depending on the specific business requirements: Liqo supports 
sharing hardware resources with a format that encapsulates Kubernetes’ ResourceQuotas, but 
a customer may also be interested in SaaS offerings or in certified metrics for 
uptime/latency/etc. 

In our work we will concentrate only on the first case, trying to develop an IaaS environment. 

We might be tempted to reuse parts of the Liqo peering logic in our catalog. In a one-to-one 
peering, sharing the list of hardware resources is a substantial part of creating the peering: 
after authentication is carried out and networking is set up, the consumer creates a 
ResourceRequest in the provider cluster, which in turn creates a ResourceOffer in the 
customer cluster to signal acceptance, for a better understanding we demand the reader to 
the Liqo Official documentation. (This architecture is intended to support a resource 
negotiation process, as hinted by the CR naming, but at the time of writing it is not possible 
to encode queries in the ResourceRequest or to limit the resources offered.) A catalog would 
then need to collect ResourceOffers from all providers, but in doing so it will need to open 
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one peering for each provider. This makes for a rather unwieldy solution in terms of resource 
usage, not to mention that the broker needs to run a Liqo instance (and possibly a Kubernetes 
stack) exclusively for collecting ResourceOffers. We propose an alternative, light-weight 
solution where we decouple the resource advertisement from the peering process. Indeed, if 
we define a stand-alone protocol for advertisements and queries, the catalog only needs to 
support our protocol. Additionally, decoupling these two processes enables a range of 
complex resource negotiation logics, ranging from unconditional acceptance (which might be 
desired in simple, one-to-one peerings where negotiations happen on paper) to extensible 
and dynamic marketplaces (which we envisage in a wide computing federation). 

Our protocol conceptualizes resource offers as a multitude of “packages,” each one with a 
set of hardware resources as well as, potentially, SaaS and other immaterial resources. We call 
each "package" a plan, and a collection of plans is an offer. This reflects the offer structure of 
commercial computing providers like Amazon AWS, Azure or DigitalOcean: there are several 
offers optimized for different workloads, and each offer has a number of plans that determine 
the size. We will go in depth with the description of this model in the following, where we also 
explain the evolution of this model in a distributed fashion and of course we describe how all 
the components interact with each other and elaborates and/or exchange data. 

 

Figure 27. Excerpt from the Digital Ocean catalog. 

7.7 ORCHESTRATOR 

Recall the user story described at the beginning of this chapter (B2C - Scenario 2). To the 
consumer, orchestration is a value-added service by which optimal providers are chosen 
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according to some (possibly private) metrics; to the provider, it is a tool for competing with 
certified metrics, as well as - potentially - a security filter in front of consumers. 

We can define an Orchestrator as an intermediary that operates on the control plane, with the 
primary function of enforcing some policy in the peering process and in the distribution of 
workloads. This policy may take several forms, ranging from optimizing metrics to 
authentication and authorization constraints, but a common feature is that the Orchestrator 
takes the additional responsibility in actuating a policy; compare this with the Catalog, which 
is merely a passive component that provides non-binding suggestions. 

 

Figure 28. Orchestrator example. 

At the implementation level, the Orchestrator is able to enforce arbitrary policies if we 
establish that all peerings must go through it. At the same time, it is not entirely "opaque": 
we want customers to retain visibility into what providers their pods are being offloaded to, 
and vice versa, we want a provider to know what customers it is serving. In fact, performance-
wise it would be ideal if the data plane was direct between the customer and the provider, 
while the control plane retains the Orchestrator as an intermediary: if on the other hand the 
data plane had to pass through the broker, the latency would suffer from the extra hop, and 
the broker would have to allocate sufficient bandwidth for serving all its customers. In essence, 
if we want to develop a scalable brokering solution it is a prerequisite that we decouple the 
control plane from the data plane, so that only the control plane may be proxied. 
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7.8 AGGREGATOR 

 

Figure 29. Aggregator example. 

At the beginning of this chapter we explored some user stories that can be used to motivate 
the need for a brokering solution. This section will focus on the use case (B2B - Scenario 1) of 
a cloud provider that wants to be competitive in the market by joining forces with other cloud 
providers (in the Figure Provider B and C), to be able to offer a better service to its customers 
(Provider A) or just to increase its market share and visibility.  

In this scenario, the brokering model that best suits the needs is the Aggregator model, 
because it allows the cloud provider to federate its resources with other cloud providers, and 
to offer them in the market as a single entity. In this way, the cloud provider can offer a better 
service to its customers, maybe with a better price, performance, or with a better service 
diversification. 

Unlike the Orchestrator, in this case both the “Control plane” and the “Data plane” of the 
cloud providers are proxied and controlled by the Aggregator, which is in charge of 
aggregating their resources, and of distributing the workloads to the ones that are able to 
handle them based on some metrics and policies. On top of that it exposes to the customers, 
and so to the market in an opaque way, the aggregated resources of the providers that are 
federated with it. The final result is that no one knows and matters about the exposition of its 
services and resources to the market, and how the workloads are distributed among the 
providers federated with the Aggregator. They just should define their own policies, if they 
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want, or let the Aggregator decide where based on metrics. This model implies of course a 
high responsibility for the Aggregator, because it becomes the single point of management 
of the resources of the providers that are federated with it. Moreover, it has to be sure that 
the resources of the providers are not overused, and that the workloads are distributed in a 
fair way among the parties. To do that, the Aggregator has to be able to monitor the resources 
and metrics of the overall environment. 

From a security and reliability point of view, it should appear as a single point of failure, in 
fact if the Aggregator fails, all the providers that are federated with it will not be reachable 
anymore. To avoid this, a complex system of redundancy and failover should be implemented, 
and the Aggregator should be able to recover from failures in a fast way. Moreover, the 
providers should be able to bypass the Aggregator in case of failure, or provide backup 
peerings with other instances of the Aggregator. 

7.9 MODEL COMPARISON 

Table 3. Comparing different brokering models. 

Model 
Peering 
control 
plane 

Peering 
Data Plane 

Workloads 
scheduling 

Resource 
negotiation 

Nodes 
knowledge 

Nodes 
aggregatio

n 

Catalog No No No Maybe Only Public No 

Orchestrator Yes No Yes Maybe 
Public and 

owned 
No 

Aggregator Yes Yes Yes Maybe 
Public and 

owned 
Yes 

Legend 

• Control Plane: capability to control and manage Peering control plane. 

• Data Plane: capability to control and manage Peering data plane. 

• Workloads scheduling: capability to manage workloads scheduling between nodes. 

• Resource negotiation: depending on the purpose, the capability to negotiate 
resources and instantiate peerings. 

• Nodes knowledge: depending on the purpose, capability to know the overall 
ecosystem architecture (intra domain or inter domain). 

• Nodes aggregation: capability to aggregate node resources and obfuscate them as a 
unique entity/node. 
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8 FLUIDOS AT THE EDGE 

This Section proposes a possible architecture for FLUIDOS when running at the edge nodes, 
whose characteristics are very different from what we can find on servers, and even on 
common desktop/laptop computers. 

8.1 IOT EDGE GRANULARITY 

In the context of the Internet of Things (IoT) different layers have been defined to capture the 
hierarchy of processing and decision-making capabilities that extend from the edge of the 
network (i.e., the devices) to the cloud, as shown in the picture below. Overall, the main 
difference between these layers is their location and capabilities of the computing resources 
involved, with micro edge and deep edge architectures involving smaller, lower-power 
devices located closer to the data source, and meta edge and fog edge architectures 
involving larger, more powerful devices located further from the data source. 

In fact, IoT environments are inherently consisting of different devices such as microcontroller 
units (MCUs) or multiprocessor units (MPUs) from several manufacturers with different 
architectural features (32-bit/64-bit), some with integrated accelerators, graphics processing 
units (GPUs), tensor processing units (TPUs), machine learning (ML) cores, cryptographic cores 
etc.), and integrated sensors. From the software standpoint, they have different operating 
systems, ranging from bare metal applications to real-time OS, and general-purpose OS 
(Linux, Android, etc.), thus forming a heterogeneous resource fabric. 

Although we can observe a new trend in which the above edge devices are becoming smarter 
and smarter, thus possibly enabling to (partially) move the intelligence from the cloud toward 
the edge, still this heterogeneity does not allow a one-fits-all approach. Therefore, next 
sections will introduce the main characteristics of each layer, which provides the ground for 
defining our solution in FLUIDOS. 
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Figure 30. IoT Edge granularity. 

8.1.1 Micro Edge 

The micro edge refers to the lowest level of the hierarchy, which includes the devices and 
sensors that are located at the edge of the network. These devices typically have limited 
processing and storage capabilities, and they rely on the other layers of the hierarchy for 
communication and decision-making. These services include sensing/actuating, connectivity, 
intelligent processing (CPUs, simple GPUs, TPUs).  

Devices belonging to the micro edge generally lack proper virtualization support, however 
these devices can be dynamically attached to different edge devices or gateways. This is 
usually possible due to the networking infrastructure. MCUs with integrated sensors are 
commonly connected to a bus (e.g., Modbus, CAN-bus) or via wireless protocols (e.g., 
Bluetooth, LoRaWAN, WIFI), which allow different entities to collect data from a swarm of 
such devices. Logical grouping can facilitate energy-efficient, reliability, quality-of-results, or 
performance goals when collecting sensor data. For example, collecting data (temperature, 
humidity) from sparse LoRaWAN-based sensors in a large field in agriculture gives a fast 
overview, but of low confidence or detailed view. Moreover, the use of many cameras or 
proximity sensors in a vehicle to gather data involves trade-offs between real-time reaction, 
decision-making accuracy, and energy usage. Further, new sensors can be arbitrarily added 
to existing equipment to produce new data streams, leading to stream-based analysis 
operations for which there is not currently any historical data. 
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8.1.2 Deep Edge 

The next layer, called Deep Edge, refers to the intermediate layer of the hierarchy, which is 
located between the micro edge and the meta edge. This layer is responsible for more 
advanced processing and decision-making, and it may include devices such as gateways and 
edge servers that are capable of handling more complex tasks than the devices at the micro 
edge. It includes IoT devices and processing, network computing units and intelligent 
controllers (PLCs, RTUs, DCS, IoT Gateways). 

The IoT Gateways is a device that connects micro edge devices to the IP network, allowing 
them to communicate with each other and with other devices and systems over the Internet 
or to the cloud. It serves as a bridge between the local non-IP network to the IP network, 
providing a secure and reliable connection for the micro edge devices to access the Internet 
and to send and receive data. Also, it expands spatial connectivity capabilities of the already 
IP aware micro edge devices (Matter, Thread etc.) The gateway typically includes hardware 
and software components that enable it to collect data from the local devices, process and 
filter the data, and transmit it to the Internet or other destination. It may also include features 
such as device management, security, and analytics. IoT gateways are used in a variety of 
applications, including industrial automation, smart homes, and smart cities. For instance, in 
the smart manufacturing these devices are programmable logic controllers (PLC) or 
distributed control systems (DCS) connected to sensor and actuators (e.g., robot, 
environmental control etc.) via a field bus or control system while providing an IP connectivity  

8.1.3 Meta Edge 

The next layer, called Meta Edge, is used to describe edge computing architectures that 
involve a layer of computing resources located between the edge and the cloud. The meta 
edge may be responsible for aggregating and processing data from multiple deep edge 
devices, and it may be located closer to the edge than the cloud, but further from the data 
source than micro edge or deep edge devices. This layer includes Micro and clustered servers 
to (e.g., high-end CPUs, GPUs, FGPAs, etc.), on premises edge computing, local edge, high 
performance embedded edge computing. 

In the scope of FLUIDOS, the Meta-Edge layer is responsible to enable connecting and 
controlling the edge (or leaf) devices and thus offer decoupling of application development 
from device data access, provision of complete lifecycle data management for devices. 

8.1.4 Fog/MEC and Cloud Computing 

Next layers further moves toward distant resources, with the components called Fog 
Computing (usually at the customer’s premises) and Multi-access Edge Computing (MEC) 
(typically at the telco side), till to the Cloud, which brings large data centers into the picture. 
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The Fog/MEC layer includes a layer of computing resources located between the Meta edge 
and the cloud, similar to the meta edge. However, devices in the fog edge are typically used 
to describe architectures that involve a larger number of more powerful computing resources 
(e.g., in the order of 10+ servers), and it is often used in applications that require real-time 
processing of large amounts of data. 

With emerging technologies like edge and fog computing that allow the execution of machine 
learning models on tiny and lightweight devices, the localization of data processing activities 
can shift closer to the real sources. As a result, the number of heterogeneous devices in the 
edge cloud continuum is increasing quickly in terms of the hardware components they include 
(e.g., multiple CPU architectures, CPU cores, RAM, or accessible accelerators like GPUs). 
Hence, collecting and transmitting sensor data, as well as pre-processing and actuation, are 
all included in the definition of a service, a resource that is potentially assigned to a 
containerized cloud application. Exposing such data streams to Kubernetes clusters or scaling 
the device data across multiple nodes can provide seamless management of edge and micro-
edge devices. 

8.2 USE-CASE SCENARIOS FOR FLUIDOS AT THE EDGE 

TODO 

8.3 TECHNICAL ARCHITECTURE 

One approach to create a continuum from the cloud to the edge can be done by using 
KubeEdge (https://kubeedge.io/en/) enabling the deployment of containerized applications 
on edge devices, and to enable these applications to communicate with other devices and 
systems in the network, including cloud-based systems. The KubeEdge architecture consists 
of several components that work together to enable the deployment and management of 
containerized applications on edge devices, as described in Section 5.1.1.  

On the basis of the KubeEdge architecture, the device controller is the cloud component of 
KubeEdge which is responsible for device management. By using the Kubernetes Custom 
Resource Definitions (CRDs), it describes device metadata/status and synchronizes these 
device updates between edge and cloud. The edge controller is the bridge between 
Kubernetes API server and EdgeCore, while CloudHub links controllers the edge part over 
and supports both web-socket based connection as well as a QUIC7 protocol access at the 
same time. 

 
7 Iyengar, J., Ed., and M. Thomson, Ed., "QUIC: A UDP-Based Multiplexed and Secure Transport", 2021. 
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The Mapper is a part of the agents (edge side), interfacing different leaf devices connection 
protocols, that creates a physical connection between edge and an IoT device by acting as 
an asynchronous message broker using MQTT. The Mapper device protocol plugins 
automatically convert from the standard message to the real message that the device 
understands. The messages provided to Mapper are picked up by a component on the edge 
node called Edge Core, which then transmits them to a container that is active on the edge 
or the cloud side. It is also responsible for a variety of other tasks, such as checking device 
health and collecting telemetry data.  

The Device Twin, a cloud-based digital representation of a physical device, enables local 
autonomy by maintaining meta-data for each device (when data/control, e.g., device 
attributes and status, are delivered by the cloud to the edge for each specific device), so that 
the EdgeCore can recover them when a device or the edge is disconnected, or when the 
edge node restarts. The Meta Manager enables communication with containerized 
applications running in pods and is responsible for storing/retrieving metadata related to 
them. 

While huge number of connected devices continuously capture and send data for analysis 
and decision making in the cloud, and well-endorsed projects, e.g., K3s provide fully 
functional Kubernetes instances to edge devices, efficient data management schemes at the 
edge, increasing degree of heterogeneous IoT devices, coexistence of wireless technologies 
and protocols, specific operating systems and services make it a challenging task. 
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9 CONCLUSIONS 

This Deliverable presents the initial work carried out in the first phase of WP2, namely 
FLUIDOS scenarios, requirements, and the resulting reference architecture, in addition to a 
detailed presentation about the unique vision of the computing continuum, also called “liquid 
computing”, proposed in FLUIDOS. 

This document highlights also the considerable amount of work has been dedicated to the 
state-of-the-art, and in particular what already exists, and which are the components and 
features that are missing to bring to life the vision of the FLUIDOS project. 

This document will be updated and further extended in the next months, to incorporate (1) 
new findings (e.g., refined requirements, new scenarios, architectural updates), (2) possible 
feedback from early adopters, and (3) potential research collaborations with other projects 
funded in the same MetaOS call. 
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11 APPENDIX: HANDLING THE COMPUTING 
CONTINUUM 

This Section reports the huge amount of existing work with respect to the creation of the 
computing continuum, extending the summary provided in Section 0. 

11.1 MOST PROMISING PROJECTS 

The idea of providing unified computing resources within a single continuum has been around 
for a few years, with multiple proposals both from the scientific community and enterprise-
driven open-source projects. The common idea is to provide a unified view of multiple 
distributed clusters either belonging to a single entity or located in a specific geographic area. 
Scientific papers tackle the problem from different points of view, proposing full-fledged 
solutions or Proof-of-Concepts (PoCs), either by focusing more on a vanilla approach with 
respect to the de-facto standard container orchestrator Kubernetes or by implementing their 
specific set of APIs.  

The collection of the literature below represents the state of the art regarding the computing 
continuum. Production-ready solutions will be prioritized, but a panoramic view on solutions 
from the research community will be provided as well. A final comparison will be provided, to 
allow the reader to better compare the respective advantages and disadvantages. 

We present firsts the three open-source projects that are most suited as a starting point for 
the liquid computing idea. We will move then to more experimental projects that, although 
not the best choice to base FLUIDOS upon, can nevertheless provide nice ideas that can be 
possibly integrated and further developed in FLUIDOS.  

11.1.1 KubeEdge 

KubeEdge [23] is an open-source tool based on Kubernetes that enhances the orchestration 
capabilities for containerized applications on Edge devices. It provides basic infrastructure 
support for network, application deployment, and metadata synchronization between the 
Cloud and Edge. KubeEdge enables users to manage and monitor applications and Edge 
devices similar to a traditional Kubernetes cluster in the Cloud. It allows developers to write 
HTTP or MQTT-based applications, containerize them, and run them either at the Edge or in 
the Cloud, based on the specific use case. 

In this context, the Cloud side is considered the master cluster, whether on-premises or 
managed by cloud providers like Amazon or Google. KubeEdge allows the Cloud side to 
connect with Edge devices remotely, deploying pods efficiently on them. To facilitate the 
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communication, KubeEdge necessitates several core components on both Cloud and Edge 
sides. The most crucial components are CloudCore and EdgeCore, which will be elaborated 
on further in the subsequent subsections. 

 

Figure 31. KubeEdge architecture. 

11.1.1.1 Cloud side 

To enable adding edge devices as nodes of the cluster and use them in the deployment 
process, the CloudCore component needs to be installed in the Kubernetes cluster on the 
cloud side. The CloudCore component consists of three modules: CloudHub, EdgeController, 
and DeviceController. 

• CloudHub acts as a mediator between the EdgeController, DeviceController, and the 
Edge side. It supports both web-socket-based connections and QUIC protocol access 
simultaneously. The EdgeHub can select one of the protocols to access the CloudHub. 
CloudHub facilitates communication between the edge and the Controllers by 
connecting to the edge through the EdgeHub module via HTTP over the web socket 
connection, while for internal communication, it communicates directly with the 
Controllers. 

• EdgeController serves as a bridge between Kubernetes API server and EdgeCore. It 
performs various functions such as syncing add/update/delete events to EdgeCore 
from Kubernetes API server, syncing the status of resources and events (node, pod, 
and configmap) to Kubernetes API server, and creating a manager interface that 
implements events for managing ConfigMapManager, LocationCache, and 
PodManager. 
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• DeviceController is responsible for device management in KubeEdge. It utilizes 
Kubernetes Custom Resource Definitions (CRDs) to describe device metadata/status 
and keep this information updated between the Edge and Cloud. The device 
controller uses a device model and device instance to implement device management. 
A device model describes the properties of the devices and the related permissions 
required to access them, while a device instance represents an actual device object. 
The device spec is static, while the device status contains dynamically changing data 
like the desired state of a device property and the state reported by the device8. 

11.1.1.2 Edge side 

The edge device requires the installation of a container runtime such as Docker or containerd, 
along with the EdgeCore component to communicate with the cloud. EdgeCore is made by 
six modules, including EdgeD and EdgeHub, with a reduced memory footprint (about 70MB). 
EdgeD is responsible for managing the lifecycle of pods, which enables the deployment of 
containerized workloads or applications on the edge node using the kubectl command line 
interface on the cloud side. It performs various functions, such as pod management, secret 
management, probe management, configmap management, container and image garbage 
collection, status management, volume management, and MetaClient. MetaClient is an 
interface of Metamanager for Edged and it helps edged to get ConfigMaps and secret details 
from Metamanager or the cloud. It also sends sync messages, node and pod status towards 
Metamanager, to the cloud. 

EdgeHub serves as the communication link between the edge and cloud, connecting to the 
CloudHub using a web-socket connection or QUIC protocol. It ensures syncing of cloud-side 
resources and updating device status changes and performs functions such as keep alive, 
publish client info, route to cloud, and route to edge. The primary task of Route to Cloud is 
to collect messages from other modules and transfer them to CloudHub via a web-socket 
connection. On the other hand, Route to Edge is accountable for receiving messages from 
the cloud via the web-socket connection and sending them to the necessary groups. 

 
8 More information on the device model definition can be found at 
https://github.com/kubeedge/kubeedge/tree/master/docs/proposals/device-crd.md#device-model-type-
definition. 
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Figure 32. EdgeD functionalities. 

11.1.1.3 Summary 

To enable the orchestration of edge devices, it is essential to install KubeEdge components 
on both the cloud and edge sides. On the cloud side, a Kubernetes cluster must already be 
established, and CloudCore must be installed. After KubeEdge installation, the cloud side is 
prepared to peer with edge devices. On the edge side, it is necessary to have a container 
runtime. Then, the join command can be executed to install EdgeCore if it is not present and 
to connect the device to the Cloud side. If an edge device goes offline, the Cloud side will 
detect it, and the node will be labeled as NotReady. If the edge node comes back online, and 
Kubernetes has not marked the pods as unreachable due to the timeout, the Cloud side will 
detect them again. 

While the most notable characteristic of KubeEdge is its reduced resource requirements on 
the edge nodes, it does not provide any network, storage and service fabric across the entire 
virtual infrastructure. For example, a pod running on an edge node will not belong to the 
same network space of pods running in the cloud, hence preventing seamless deployment of 
pods and services across the entire virtual space. Hence, it looks more appropriate for massive 
deployments of IoT-oriented applications, running at the edge, which simply gather local data 
and send it to other services running on the cloud side, for further processing and storage. 

11.1.2 Karmada 

Karmada (Kubernetes Armada) [24] is a management system for Kubernetes that allows cloud-
native applications to run on multiple clusters and clouds without modifying the applications. 
It uses Kubernetes-native APIs and advanced scheduling capabilities to provide an open, 
multi-cloud Kubernetes experience. Karmada aims at automating multi-cluster application 
management in hybrid cloud scenarios with centralized multi-cloud management, high 
availability, failure recovery, and traffic scheduling. Officially, Karmada is compatible with the 
Kubernetes native API and it can seamlessly upgrade from single-cluster to multi-cluster while 
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integrating with the existing K8s toolchain. However, although most of its capabilities require 
the use of new CRDs, hence (de facto) requiring users and dev-ops to learn a new way to 
interact with their clusters, as traditional Kubernetes primitives cannot be used to control the 
virtual continuum. 

Karmada has three built-in policies for deployment scenarios and multiple scheduling policies 
for cluster affinity, multi-cluster splitting/rebalancing, and multi-dimension HA. It also provides 
centralized management for clusters in public cloud, on-premises, or at the edge. 

 

Figure 33. Karmada overview. 

11.1.2.1 Concepts 

Karmada has its own set of concepts and resources that manage the multi-cloud environment. 
These concepts include the Resource Template, which utilizes the Kubernetes Native API to 
create a federated resource template, allowing for seamless integration with existing 
Kubernetes tools. Karmada also offers the Propagation Policy API, which supports 1:n 
mapping of policy to workloads, allowing for easy definition of multi-cluster scheduling and 
spreading requirements. Users do not need to indicate scheduling constraints every time they 
create a federated application, as default policies enable them to interact directly with the 
Kubernetes API. Additionally, Karmada provides the Override Policy API, which enables users 
to customize the automation of cluster-related configurations, such as overriding the image 
prefix based on member cluster region or the StorageClass based on cloud provider. The 
diagram in Fig. 5 illustrates how Karmada resources propagate to member clusters. 
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Figure 34. Karmada main concepts. 

11.1.2.2 Architecture 

The overall architecture of Karmada is shown in Figure 34. The Karmada Control Plane 
includes the Karmada API Server, Karmada Controller Manager, Karmada Scheduler, and the 
etcd database, which stores the Karmada API objects. The API server acts as the REST 
endpoint that all other components communicate with, and the Karmada Controller Manager 
carries out operations based on the API objects submitted to the API server. Internally, it runs 
various controllers, each of which monitors Karmada objects and takes the corresponding 
actions to create regular Kubernetes resources on the API servers of the underlying clusters, 
based on specific events. 

The Cluster Controller attaches Kubernetes clusters to Karmada to manage the clusters' 
lifecycle by creating cluster objects. The Policy Controller watches PropagationPolicy objects 
and selects a group of resources that match the resourceSelector, then creates 
ResourceBinding with each resource object. The Binding Controller watches ResourceBinding 
objects and generates a Work object corresponding to each cluster with a single resource 
manifest. The Execution Controller watches Work objects and distributes the resources to 
member clusters when Work objects are created. 
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Figure 35. Karmada architecture. 

11.1.2.3 Cross-cloud multi-cluster multi-mode management 

Karmada offers support for safe isolation, multi-mode connection, and multi-cloud. For safe 
isolation, it creates a separate namespace for each cluster, which is prefixed with “karmada-
es-“. With multi-mode connection, Karmada can either be directly connected to the cluster 
kube-apiserver through a push mechanism or it can delegate tasks to an agent component 
installed in the cluster through a pull mechanism. Karmada also offers multi-cloud support, 
provided that the cloud is compliant with Kubernetes specifications. This includes support for 
various public cloud vendors, private cloud, and self-built clusters. The overall relationship 
between the member cluster and the control plane is illustrated in Figure 36. 



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 107 of 133 

 

 

Figure 36. Karmada cross-cloud multi-mode management. 

11.1.2.4 Multi-policy multi-cluster scheduling 

Karmada provides support for cluster distribution capabilities under various scheduling 
strategies such as ClusterAffinity, Toleration, SpreadConstraint, and ReplicasScheduling. It 
also allows for differential configuration through OverridePolicy, which includes 
ImageOverrider, ArgsOverrider, CommandOverrider, and PlainText for customized 
differentiation configurations. Karmada further offers rescheduling functionalities with 
components like Descheduler and Scheduler-estimator that trigger rescheduling based on 
instance state changes in member clusters, providing a more precise desired state of the 
running instances. If a cluster lacks sufficient resources to accommodate pods, Karmada will 
reschedule them. The overall scheduling and rescheduling processes are illustrated in Figure 
37 and Figure 38, respectively. 
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Figure 37. Karmada multi-policy multi-cluster scheduling. 

 

Figure 38. Karmada multi-policy multi-cluster re-scheduling. 
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11.1.2.5 Cross-cluster failover of applications 

Firstly, Karmada supports cluster failover (Figure 39), which involves the automatic migration 
of faulty cluster replicas in a centralized or decentralized manner after a cluster failure. 
Secondly, Karmada also supports cluster taint settings. If a user sets a taint for the cluster, and 
the resource distribution strategy cannot tolerate it, Karmada will trigger the migration of the 
cluster replicas automatically. Lastly, Karmada ensures uninterrupted service by ensuring that 
service replicas do not drop to zero during the migration process. 

 

Figure 39. Karmada cross-cluster failover of applications. 

11.1.2.6 Global uniform resource view 

Karmada facilitates the collection and aggregation of resource status using the Resource 
Interpreter to create resource templates. Additionally, it enables unified management of 
resource creation, updating, deleting, and querying. Users can also execute operations 
commands, such as describe, exec, and logs, in one Kubernetes context. Karmada provides 
a global search for resources and events, including global fuzzy search and precise search 
through cache queries. It also supports search engines like Elasticsearch or OpenSearch, 
relational databases, and graph databases as third-party storage. 
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Figure 40. Access and operations via Karmada API server. 

 

Figure 41. Checking and searching for cluster resources via Karmada API server. 
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11.1.2.7 Access control and resource quota 

Firstly, Karmada offers unified authentication with a single API access entry and access control 
that is consistent with member clusters. Secondly, it enables unified resource quota through 
FederatedResourceQuota, which allows for global configuration of resource quotas for each 
member cluster, federation-level configuration of resource quotas, and real-time resource 
usage collection for each cluster. Finally, it also supports reusable scheduling strategies by 
decoupling resource templates from scheduling policies, making them interchangeable. 

 

Figure 42. Karmada unified authentication. 

 

Figure 43. Defining global resource quota in Karmada. 

11.1.2.8 Cross-cluster network, storage and service fabric 

Karmada provides also support for multi-cluster service discovery and multi-cluster networks. 
With the help of ServiceExport and ServiceImport, Karmada enables cross-cluster service 
discovery. Additionally, Karmada leverages Submariner to connect container networks 
between clusters. This enables seamless communication and networking between containers 
in different clusters, making it easier to manage and deploy multi-cluster applications. 
However, it is worth nothing that this is not provided by Karmada, but it requires the usage 
of a different tool (Submariner, in fact), with the obvious consequences in terms of 
compatibility and complexity of the overall solution. 
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Finally, Karmada provides no solutions to the creation of a storage fabric spanning across the 
entire virtual domain. 

 

Figure 44. Service and network fabric with Karmada. 

11.1.3 Liqo  

Liqo [25] is an open-source project that enables dynamic and seamless Kubernetes multi-
cluster topologies, supporting heterogeneous on-premises, cloud and edge infrastructures. 
While its focus is on cloud-oriented datacenter and servers, it could be used also on individual 
devices (e.g., coupled with lighter Kubernetes distributions, such as K3s), although it may not 
be appropriate to support features such as real-time scheduling and such. 

Among its distinctive features, Liqo encompasses four primary capabilities, namely peering, 
offloading, network fabric, and storage fabric. 

11.1.3.1 Peering 

The process of peering in Liqo involves a one-way relationship between two Kubernetes 
clusters, where the consumer cluster is granted the ability to offload tasks to the provider 
cluster. The consumer establishes an outgoing peering towards the provider, while the 
provider is subjected to an incoming peering from the consumer. This setup allows for 
maximum flexibility in asymmetric situations and supports bidirectional peerings through their 
combination. Additionally, the same cluster can act as a provider and consumer in multiple 
peerings. 
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To establish a peering relationship between two clusters, four tasks are involved: 
authentication, parameters negotiation, virtual node setup, and network fabric setup. 
Authentication involves pre-shared tokens to obtain a valid identity to interact with the other 
cluster's Kubernetes API server. The two clusters then exchange necessary parameters, 
including resource allocation, VPN tunnel setup, and more, and create a virtual node to 
abstract the resources shared by the provider cluster. The network fabric is configured to 
establish a secure cross-cluster VPN tunnel, enabling seamless communication between local 
and remote cluster pods. 

Liqo supports two peering approaches, the out-of-band control plane, and the in-band 
control plane, which are not mutually exclusive and can be used by the same cluster for 
different remote clusters. 

The out-of-band control plane is the standard peering method where the Liqo control plane 
traffic, including the initial authentication process and communication with the remote 
Kubernetes API server, flows outside the VPN tunnel that connects the two clusters. The VPN 
tunnel is established later in the peering process and is only used for cross-cluster pod traffic. 
However, TLS is still used to ensure secure communication. 

 

Figure 45. Out-of-band control plane in Liqo. 

On the other hand, the in-band control plane is an alternative peering method where the Liqo 
control plane traffic flows inside the VPN tunnel connecting the two clusters. The tunnel is 
established statically at the beginning of the peering process and is used for all inter-cluster 
traffic. The negotiation process is carried out directly by the Liqo CLI tool, and the approach 
requires three different cross-cluster traffic flows, as depicted in the following high-level 
diagram. 
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Figure 46. In-band control plane in Liqo. 

11.1.3.2 Offloading 

The virtual node abstraction allows for workload offloading by spawning a virtual node at the 
end of the local (consumer) cluster’s peering process. This virtual node represents and 
aggregates a subset of resources shared by the remote cluster, enabling the local cluster to 
transparently extend its capabilities. The vanilla Kubernetes scheduler takes the new node's 
capabilities into account when selecting the best place for workload execution, and the 
approach is fully compliant with standard Kubernetes APIs, making it easy to interact with and 
inspect offloaded pods. The virtual node abstraction is implemented by an extended version 
of the Virtual Kubelet project and summarizes the resources shared by a remote cluster, 
automatically propagating the negotiated configuration into the capacity and allocatable 
entries of the node status. 

To enable seamless workload offloading, Liqo extends Kubernetes namespaces across cluster 
boundaries, creating twin namespaces in selected remote clusters for offloaded pods. Once 
a pod is scheduled onto a virtual node, the corresponding Liqo virtual kubelet creates a twin-
pod object in the remote cluster for actual execution. Liqo supports both stateless and stateful 
pods, and remote pod resiliency is ensured through a custom resource (ShadowPod) that 
triggers Liqo enforcement logic in the remote cluster, guaranteeing that the desired pod is 
always present. 

The resource reflection process propagates and synchronizes selected control plane 
information into remote clusters, enabling the seamless execution of offloaded pods. Liqo 
supports the reflection of resources related to service exposition, persistent storage, and 
configuration data, automatically propagating resources of these types in a namespace 
selected for offloading into the corresponding twin namespaces created in selected remote 
clusters. The local copy of each resource is the source of trust for realigning the content of 
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the shadow copy reflected remotely, with appropriate remapping of information performed 
by the virtual kubelet to account for conflicts and different configurations in different clusters. 

11.1.3.3 Network fabric 

The network fabric is the Liqo subsystem that extends the Kubernetes network model across 
multiple clusters, allowing pods to communicate with each other as if they were locally 
executed. It enables communication between pods in one cluster with those in remote peered 
clusters, either directly, or through the proper address space remapping (with NAT translation) 
in case the two clusters have overlapped network spaces. In fact, since different clusters can 
have varying parameters and components, it is not possible to guarantee non-overlapping 
pod IP address ranges. This may require address translation mechanisms, but NAT-less 
communication is preferred when address ranges are disjointed. The figure below depicts the 
network fabric established between two clusters and its main components. 

 

Figure 47. Liqo network fabric. 

11.1.3.4 Storage fabric 

The Liqo storage fabric subsystem facilitates the effortless transfer of stateful workloads to 
remote clusters, employing two primary methods. Firstly, storage binding is postponed until 
the first consumer is scheduled, either locally or remotely. Secondly, data gravity comes into 
play during subsequent scheduling procedures, ensuring that pods requesting existing 
storage pools are scheduled onto the cluster hosting the corresponding data. These 
techniques extend Kubernetes practice to multi-cluster scenarios, simplifying the 
configuration of high availability and disaster recovery scenarios. This is especially relevant for 
replicating and synchronizing database instances across various clusters. 

Below the surface, the Liqo storage fabric uses a virtual storage class to create appropriate 
storage pools in different clusters. When a new PersistentVolumeClaim (PVC) linked to the 
virtual storage class is created, and its consumer is bound to a node (either virtual or real), 
Liqo's logic is activated based on the target node. In the case of a local node, PVC operations 
are remapped to a secondary node that corresponds to the real storage class, while for virtual 
nodes, the reflection logic creates a remote shadow PVC and synchronizes the 



 

FLUIDOS | D2.1: Scenarios, Requirements and Reference Architecture v.1 

 

© 2022-2025 FLUIDOS                   Page 116 of 133 

 

PersistentVolume information. In both instances, PersistentVolumes are created with locality 
constraints to ensure each pod is scheduled only on the cluster with the required storage 
pools. 

Aside from the provided storage class, Liqo also supports running pods that use cross-cluster 
storage managed by external solutions, such as persistent volumes provided by the cloud 
provider infrastructure. 

11.2 RESEARCH-ORIENTED PROPOSALS 

This section analyzes the solutions proposed by the research community, which includes both 
pure research ideas (e.g., papers without a corresponding software prototype) and proofs-of-
concept or research-oriented prototypes (e.g., experimental papers). Solutions and tools 
presented in this section should be intended as the state of the art in literature and not 
production-ready solutions. Nonetheless, they can provide the ground for the future research 
activities in FLUIDOS project. 

11.2.1 Cloudlets 

Mobile cloud computing is a way to tackle the limited resources of mobile devices. It involves 
transferring computationally demanding tasks to the cloud. However, this approach can be 
ineffective for real-time applications due to the distance between the cloud and the user, 
resulting in high WAN latency. To address this issue, the concept of cloudlets [86] was 
introduced [26]. 

Cloudlets are trusted, resource-rich computers in the near vicinity of the mobile user (e.g., 
near or collocated with the wireless access point). Mobile users can then rapidly instantiate 
custom virtual machines (VMs) on the cloudlet running the required software in a thin client 
fashion. 
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Figure 48. Cloudnet overview. 

Dynamic partitioning of an application into components can lead to improved performance. 
By offloading components, the allocation of cloudlet resources can be adjusted to prioritize 
latency-critical sections of the application, while non-real-time sections can be offloaded to 
more distant clouds. The cloudlet infrastructure is dynamic, allowing devices to join and leave 
the cloudlet during runtime. 

The ad-hoc cloudlet is comprised of nodes discovered dynamically in the LAN network. These 
nodes run a Node Agent, which can spawn Execution Environments to deploy components. 
Whenever nodes join or leave the cloudlet, the Cloudlet Agent recalculates the deployments 
and migrates components as necessary. The elastic cloudlet operates on a virtualized 
infrastructure where nodes run in virtual machines. The Cloudlet Agent can spawn new nodes 
when additional resources are needed or stop nodes when too many resources are allocated. 

 

Figure 49. Cloudlets and agents. 

One of the most relevant evaluation studies demonstrate that a component-based approach 
(the application is split in several distinct functional modules, such as micro-services) is 
advantageous for an Augmented Reality scenario, and the cloud is not suitable for delegating 
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real-time constrained components. Moreover, the hierarchical design facilitates decision-
making that can benefit all users and achieve a global optimum instead of conflicting local 
optima. Additionally, there is a need for tools to support application developers in creating 
component-based applications and defining quality constraints without creating additional 
developer burden. These tools should be able to split up applications into separate 
components automatically or semi-automatically. 

11.2.2 FLEDGE 

FLEDGE [87] is an orchestration system for containers that is compatible with Kubernetes and 
is specifically designed for low-resource edge devices. The system incorporates a modified 
Virtual Kubelets and a VPN to connect directly with Kubernetes clusters. The components of 
FLEDGE installed on an edge device are known as a FLEDGE agent. As FLEDGE serves as 
both Kubelet and container network plugin, the need for the CNI layer, which is typically 
situated between Kubelet and network plugin, is eliminated. Given that the number of pods 
that can be deployed on edge devices is limited, it is preferable to use a simple, yet effective 
pod networking handler (Figure 50, Container networking) that assigns IP addresses on a first 
come, first serve basis. The pod networking handler is also responsible for configuring the 
networking namespaces correctly (Figure 50, namespace manager), irrespective of the active 
container runtime. By labeling the node, deployment of the network plugin itself is prevented, 
and the system requires approximately 60MiB memory and 78MiB storage to operate on a 
Raspberry Pi 3, including all dependencies, which is significantly less than both Kubernetes 
and K3S. However, the above resource requirements are on the same order of magnitude of 
KubeEdge. 

 

Figure 50. FLEDGE overview. 

FLEDGE utilizes Kubernetes IP ranges to configure container networking, which isolates 
container networking within the node and does not impact other nodes in the cluster. The 
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master node remains unaware of this approach, and the container networking plugin functions 
normally on other nodes. However, resource monitoring based on total resources and 
maximum resource allocation to pods poses challenges for edge devices. Since operating 
system and orchestrator resource use may represent a significant portion of total resources, it 
can be difficult to determine if a device can accommodate additional workloads based on 
pod-allocated resources alone. To address issues related to heterogeneous networks and 
security, FLEDGE establishes a VPN (OpenVPN) and builds the cluster and container network 
on top of its interface. Despite this solution, there are several downsides. First, packet 
encryption effectiveness depends on the chosen algorithm, and encryption can be disabled 
for performance reasons. Second, using a VPN negatively affects system and network 
resources, potentially reducing cluster scalability. Lastly, physical access to the device permits 
anyone to access cluster services through the VPN connection, necessitating physical and OS 
level security measures. 

 

Figure 51. FLEDGE VPN. 

The OpenVPN and FLEDGE containers require privileged mode access to manage network 
interfaces, namespaces, and cgroups. Since FLEDGE executes Kubernetes deployments, the 
agents must run as root, which poses a risk of unauthorized access to container images 
containing proprietary software. As a result, they serve as a prime attack vector, allowing 
access to all containers and images they manage. 

The Virtual Kubelet plays a minor role in FLEDGE, primarily facilitating communication with 
Kubernetes master nodes. However, its location is not important since API calls can be 
forwarded to other devices via a custom broker implementation. There are two options for 
running the Virtual Kubelet depending on resource requirements: 

• In the cloud, where Virtual Kubelets are executed as pods separate from FLEDGE 
agents, and Kubernetes API calls are forwarded to agents via REST services. This 
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approach reduces resource demands on edge devices, making the system more 
robust. 

• On the edge, where the Virtual Kubelet is integrated into the FLEDGE agent and 
executed as a container or process. API calls are performed directly in the same 
process, reducing operational complexity but increasing resource demands and 
decreasing network resilience. 

 

Figure 52. FLEDGE virtual kubelet. 

In a preliminary evaluation, a crucial finding is that on ARM devices, a FLEDGE deployment 
with either Containerd or Docker requires significantly less storage than on x64. This 
difference is especially pronounced in the case of Docker and FLEDGE, which demands three 
times more storage on x64 than on ARM. The ARM versions of FLEDGE using Docker and 
Containerd are much more resource-efficient, consuming up to 50% less memory for Docker 
and 65% for Containerd. Containerd is by far the most suitable container runtime for use with 
FLEDGE. Overall, the ARM setup of FLEDGE using Containerd only necessitates a total of 
about 80MiB storage and 50MiB memory, including a VPN client container. These outcomes 
demonstrate that FLEDGE, which is compatible with Kubernetes, utilizes significantly fewer 
resources and is a feasible container orchestrator for edge devices. 

11.2.3 Decentralized Kubernetes Federation Control Plane 

In their position paper [88], the authors present a vision for a distributed and decentralized 
control plane for Kubernetes federation. The aim is to enable the support of thousands of 
Kubernetes clusters to cater to the needs of next-generation edge cloud use cases and, even 
more important, provide better and more robust support for disconnected clusters (e.g., split-
brain scenario). The proposed system maintains cluster autonomy, promotes collaborative 
handling of error conditions among clusters, and can scale to support edge cloud use cases. 
The approach is based on the utilization of a shared database of conflict-free replicated data 
types (CRDTs) that are shared among all clusters in the federation, along with algorithms that 
leverage this data. 

The proposed solution for a federated Kubernetes control plane involves two main tasks: 
configuring federated resources and propagating decisions and related data to affected 
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clusters. Continuous operations are required for defining, configuring, and removing 
federated resources, and the resulting decisions and data must be distributed to the affected 
clusters. The proposed solution suggests replacing the central KubeFed controller with 
distributed federation controllers in each cluster, which apply templating, placement 
applicability, and value substitutions on federated resources to maintain cluster autonomy, 
provide resilience, and scale to meet the requirements of edge computing deployments. 

To achieve distributed federation, the federated database leverages CRDTs [35], a type of 
distributed data that have mathematically provable conflict-free properties and can be safely 
distributed among nodes in a distributed database via, e.g., a Gossip protocol [36]. The 
proposed system extends the Kubernetes API server to separate operations on federated 
objects from those on standard, cluster-local objects. The federation control plane 
communicates indirectly through the distributed database to ensure all clusters are aware of 
the intended goal and current system state. Distributed federation controllers use this 
information to modify their local Kubernetes clusters via the API. 

Due to the uncertainty around future resource availability and cluster capacity, the distributed 
federation controllers continuously update a shared data structure with information on how 
many Pods of a specific federated Deployment they have deployed locally. In situations where 
ideal scheduling cannot be realized due to resource unavailability, clusters can collaboratively 
redistribute resources among themselves. The proposed architecture uses a distributed 
federated database to enable distributed federation without relying on a centralized 
controller or a distributed etcd database. 

 

Figure 53. Decentralized Kubernetes federation control plane: proposed architecture. 

 

Figure 54. Decentralized Kubernetes federation control plane: resource redistribution. 
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11.3 PAST PROJECTS 

For the sake of completeness, we report here also solutions that, so far, showed little 
attraction or can be considered at their dead end. This would make our state-of-the-art review 
more complete, building on the experience (and errors) of the past projects, despite the fact 
they have been abandoned, deprecated, or if they just lost attention from the community. 

11.3.1 KubeFed 

Kubernetes Cluster Federation [28] (KubeFed for short) enables the synchronization of the 
settings of various Kubernetes clusters using a unified set of APIs on a host cluster. KubeFed's 
goal is to offer means of specifying which clusters require management of their settings and 
what those settings should be. KubeFed's fundamental mechanisms are purposefully 
simplistic and designed to serve as the groundwork for more intricate multi-cluster scenarios, 
such as the deployment of multi-regional applications and disaster recovery. 

 

Figure 55. KubeFed overview. 

KubeFed has two types of configurations: type configuration and cluster configuration. Type 
configuration specifies the API types that KubeFed should handle, while cluster configuration 
specifies the target clusters. Propagation is the mechanism that distributes resources to the 
federated clusters. Type configuration has three key concepts: templates, placement, and 
overrides. Templates define how a resource should look across all clusters, placement 
specifies which clusters a resource should appear in, and overrides allow for per-cluster 
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variations to be applied to the template. These concepts provide the minimum information 
required for propagation and are useful for higher-level behaviors such as policy-based 
placement and dynamic scheduling. Higher-level APIs, such as Status, Policy, and Scheduling, 
build on these concepts to collect the status of distributed resources, determine which 
clusters resources are allowed to be distributed to, and make decisions about how workloads 
should be distributed across clusters. 

After running into two different versions of the specifications (KubeFed v1, and KubeFed v2), 
the community mostly abandoned those efforts and considers Karmada the most promising 
successor to this project. It is worth mentioning that Liqo was not considered as a successor 
because, at the time of writing, is not officially part of the CNCF foundation. 

11.3.2 Admiralty 

Admiralty [29] is a system of Kubernetes controllers that efficiently organizes workloads over 
multiple clusters. It allows for a variety of global computing applications such as high 
availability, active-active disaster recovery, dynamic content delivery networks (dCDNs), 
distributed workflows, edge computing, Internet of Things (IoT), 5G, central access control 
and auditing, blue/green cluster upgrades, cluster abstraction, resource federation, cloud 
bursting, cloud arbitrage, and more. 

The purpose of Admiralty is to link the control planes of different Kubernetes clusters. To 
utilize Admiralty, first, install it in each cluster that needs to be federated, and configure the 
clusters as sources and/or targets to build a centralized or decentralized topology. Next, 
annotate any pod or pod template in the source cluster, and Admiralty will transform the 
elected pods into proxy pods scheduled on virtual-kubelet nodes that represent the target 
clusters. Delegate pods in the remote clusters will run the containers, and pod dependencies 
and dependents will follow delegate pods, meaning they are copied as needed to target 
clusters. A feedback loop will update the statuses and annotations of the proxy pods to reflect 
those of the delegate pods, and kubectl logs and kubectl exec will work as expected. Finally, 
Admiralty can integrate with Admiralty Cloud/Enterprise, Cilium, and other third-party 
solutions to allow for networking across clusters. 

To establish a connection between two clusters, one is designated as the source and the other 
as the target. Controllers in the source cluster, managed by the Admiralty agent, 
communicate with the Kubernetes API of the target cluster. The controllers in each cluster can 
utilize the target cluster's Kubernetes API to communicate with one another, just as they 
would within a single cluster. 
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Figure 56. Cluster connections in Admiralty. 

It is worth nothing that Admiralty can be considered a possible ancestor/alternative9 of Liqo, 
with several ideas shared across the two project. 

11.3.3 KubeML 

KubeML [37] is a serverless machine learning system that is specifically designed to operate 
on Kubernetes and can be smoothly integrated with the widely-used PyTorch framework. This 
system is distinctive from other options as it fully takes advantage of GPU acceleration and 
can surpass TensorFlow, especially when processing smaller batches locally. When compared 
to TensorFlow, KubeML demonstrates a 3.98x faster time-to-accuracy with small batch sizes 
and maintains a 2.02x speedup for frequently benchmarked machine learning models such as 
ResNet34. 

11.4 OTHER SOLUTIONS 

For the sake of completeness, we also mention here solutions that are not directly related to 
the FLUIDOS project as production-ready ones, but that have some points of contact with the 
other projects mentioned or they are interesting for using a different approach. 

 
9 The word “ancestor” is not completely appropriate as the projects started, and have been developed, almost at 
the same time. 
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11.4.1 EVE-OS 

EVE-OS [30] is a Linux-based operating system for distributed edge computing, which is open 
and universal. It supports Docker containers, Kubernetes clusters, and virtual machines, 
offering flexibility to deploy it with any hardware, application, or cloud. 

EVE-OS can be deployed on bare metal hardware such as x86, Arm, GPU or within a virtual 
machine to provide consistent system and orchestration services. The support for virtual 
machines allows users to continue to use existing software investments while building new 
containerized innovations simultaneously. By using bare metal EVE-OS, the possibility of 
bricking a device in the field during an update is eliminated, which saves the cost of an 
expensive truck roll. 

The open EVE API is used to orchestrate the underlying hardware and installed software, 
enabling developers to achieve consistent behavior across a mix of technology ingredients. 
The project's primary focus is to maintain a state-of-the-art security posture while offering 
consistency and flexibility. 

11.4.2 ThreeFold 

The ThreeFold platform [31] operates as a decentralized peer-to-peer network that links users 
with local Internet resources offered by “farmers”, without the involvement of centralized 
servers or other intermediaries. It relies on the following two main components: 

• Zero-OS (ZOS): is an operating system that is highly efficient and lightweight. Unlike 
other operating systems, it does not have a shell or support remote connections, 
except for debugging purposes. It only supports a limited number of primitives. ZOS 
is specifically designed by ThreeFold from the ground up to provide the necessary IT 
resources for solutions that run on the ThreeFold Grid. The development of ZOS 
began with the Linux kernel and was aimed at enhancing efficiency, energy usage, 
performance, scalability, management cost, and security. 

• ThreeFold Grid: is a decentralized peer-to-peer Internet infrastructure that uses 
autonomous cloud and high-performance, permissionless blockchain technology. It is 
open-source and allows for the connection of compute, storage, and network capacity 
in one full-stack system. The ThreeFold Grid operates as a Decentralized Autonomous 
Organization (DAO) and consists of many servers called 3Nodes that are distributed 
globally by independent individuals and organizations known as ThreeFold Farmers. 
These 3Nodes run on a lightweight and ultra-efficient open-source operating system 
called Zero-OS. Each user can access the ThreeFold Grid through a Digital Self, which 
acts as a virtual system administrator that performs various tasks such as reserving 
capacity, sending messages, storing files, and building applications through a Smart 
Contract for IT. 
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11.4.3 BalenaOS 

BalenaOS [32] has been created to offer the essential components required for the Docker 
engine to work effectively in embedded scenarios. It is based on the Yocto framework and 
uses systemd as its init system. The networking stack consists of Network Manager, DNSmasq, 
and Modem Manager, which have been designed to provide a robust stack capable of 
handling the diverse range of hardware and unpredictable network configurations that a 
device may encounter during boot-up. Furthermore, BalenaOS includes Avahi, OpenSSH, and 
OpenVPN, which enable support for mDNS, SSH, and VPN connections respectively.  

 

Figure 57. BalenaOS: overview. 

11.4.4 Aurae  

Aurae [33] is a Rust-based open-source project that offers a memory-safe systems runtime 
daemon called auraed, designed particularly for enterprise distributed systems. The auraed 
daemon functions as a pid 1 on a Linux kernel, overseeing containers, virtual machines, and 
creating short-lived nested virtual instances to add another layer of isolation. 

Aurae assumes responsibility for all runtime operations on a single device and presents mTLS 
encrypted gRPC APIs (Aurae Standard Library) to supervise these operations. With the help 
of Aurae Cells, the project provides a technique for dividing a system into segments using 
different isolation approaches for corporate workloads. 

Due to the project being in its early stages and actively developed, the APIs are frequently 
modified. A long-term stable release is not currently available. Therefore, it is not 
recommended to utilize the project in a production environment at this time. 

11.4.5 Submariner 

Submariner [34] enables direct networking between Pods and Services located in separate 
Kubernetes clusters, whether they are situated on-premises or in a cloud environment. This 
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solution is fully open-source and has been designed to function with any network plugin (CNI). 
Submariner offers cross-cluster L3 connectivity through both encrypted and unencrypted 
connections, as well as Service Discovery across clusters. The deployment and management 
of this tool are made easier with the use of the subctl command-line utility, which also 
supports interconnecting clusters with overlapping CIDRs. 

Submariner establishes secure and high-performance connections between multiple 
Kubernetes clusters. It creates a flat network between the clusters, enabling IP connectivity 
among Pods and Services. Additionally, the Lighthouse feature facilitates service discovery 
through the Kubernetes Multi Cluster Services model. Submariner comprises various 
components, including the Gateway Engine that manages secure tunnels, the Route Agent 
that routes cross-cluster traffic, the Broker that enables Gateway Engines to find each other, 
and the Service Discovery that allows DNS discovery of Services across clusters. Optional 
components, such as the Globalnet Controller, can provide further functionality, such as 
managing overlapping CIDRs between clusters. This system can work on both on-premises 
and public cloud environments. 

 

Figure 58. Submariner: overall architecture. 

The Broker component acts as an intermediary between Gateway Engines located in different 
clusters, by exchanging metadata information. The Broker consists of Custom Resource 
Definitions (CRDs) that are stored in the Kubernetes datastore, along with a ServiceAccount 
and RBAC components to ensure secure access to its API. The Endpoint and Cluster CRDs 
contain information about the active Gateway Engines in a cluster and static information about 
the originating cluster, respectively. 

The Broker is a singleton component that is deployed in a cluster whose Kubernetes API is 
accessible by all participating clusters. It can be deployed on a public cluster if there is a mix 
of on-premises and public clusters. The Gateway Engine components in each participating 
cluster are configured with the information to securely connect to the Broker cluster's API. 
The Broker cluster can be standalone without other Submariner components. 
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During the Broker's unavailability, the data plane continues to function using the last known 
information, while control plane components cannot advertise or learn new or updated 
information from other clusters. When the connection to the Broker is restored, the 
components automatically synchronize their local information with the Broker and update the 
data plane if necessary. 

The process of discovering services is facilitated by the Lighthouse project, which provides 
DNS discovery to Kubernetes clusters in multi-cluster environments that are connected by 
Submariner. This project employs the Kubernetes Multi-Cluster Service APIs to enable this 
functionality. Each cluster has a Lighthouse Agent that communicates with the Kubernetes 
API server in the Broker cluster to exchange metadata about services with other clusters. The 
local service information is shared with the Broker, while the service information from other 
clusters is imported. 

 

Figure 59. Submariner: basic lighthouse architecture. 

Submariner has a limitation wherein it cannot handle overlapping CIDRs across clusters, which 
means each cluster must have a distinct CIDR that does not conflict with any other cluster. 
This poses a problem as most clusters use the default CIDRs, resulting in multiple clusters 
using the same CIDRs. Changing CIDRs requires a disruptive process and a cluster restart. To 
address this issue, Submariner has a component called Globalnet, which is a virtual network 
that supports overlapping CIDRs in connected clusters. Each cluster is given a subnet from 
this virtual network, and users can manually specify a GlobalCIDR for each cluster using the 
flag globalnet-cidr. Globalnet assigns a configurable number of global IPs per cluster, 
represented by ClusterGlobalEgressIP resource, which are used as egress IPs for cross-cluster 
communication. Users can also assign global IPs per namespace using the GlobalEgressIP 
resource, which takes precedence over the cluster-level global IPs. Exported ClusterIP type 
services are automatically allocated a global IP for ingress, while for headless services, each 
backing pod is allocated a global IP that is used for both ingress and egress. The routing and 
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iptable rules use the corresponding global IPs for ingress and egress, and all address 
translations occur on the active Gateway node of the cluster. 

 

Figure 60. Submariner: overlapping IP addressing spaces (CIDR). 

 

Figure 61. Submariner: global private network. 
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Figure 62. Submariner: communications with Globalnet. 

Submariner Globalnet is a tool that facilitates communication between pods and remote 
services using global IP addresses. It is comprised of two main components: the IP Address 
Manager (IPAM) and Globalnet. IPAM creates a pool of global IP addresses based on the 
configured GlobalCIDR, and assigns them to pods and services as needed. Globalnet sets up 
routing entries and iptables rules to enable cross-cluster connectivity using global IPs, and 
also creates additional Services with externalIPs to allow for connectivity from nodes to remote 
services. When a Pod, Service, or ServiceExport is deleted, the rules are removed from the 
gateway node. However, in addition to connectivity, pods also need to know the IPs of 
services on remote clusters. To address this, Lighthouse has been enhanced to support 
Globalnet, with the controller using a service's global IP to create ServiceImports for ClusterIP 
services, and the plugin using global IPs to reply to DNS queries. 

With respect to FLUIDOS, Submariner creates a network fabric across clusters, but it does not 
provide any help for service and storage fabrics. In fact, it is used by Karmada to complement 
its features, but cannot be used alone to create the liquid computing vision proposed in 
FLUIDOS. 

11.4.6 Cilium Custer Mesh 

Cilium Cluster Mesh [99] is an open-source product created by Isovalent, which looks similar 
to Submariner in terms of overall objectives. For instance, it creates a network mesh between 
multiple clusters, hence enabling seamless communication between pods. 

However, this solution requires that (a) all clusters are coordinated in terms of IP addresses (it 
does not support overlapping IP addressing space and the automatic translation of addresses 
through NATs); (b) all cluster must be running the Cilium CNI, hence preventing the 
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connection of clusters running different CNIs (e.g., Cilium in one cluster, and Calico in 
another). 

Despite the above limitations, this solution has gained a considerable attraction because of 
the reputation of the proposing company (Isovalent), and it is appropriate when multiple 
clusters are coordinated, e.g., which often happens when all the clusters are under the control 
of a single administrative entity. 

With respect to FLUIDOS, Cilium Cluster Mesh provides a partial answer to the liquid 
computing problems, as it addresses only the network fabric. It is worth noting that, in the 
most recent versions, Cilium Cluster Mesh is compatible with Liqo, which has the capability 
to replace its network fabric with an external plug-in, which in fact can be Cilium Cluster Mesh. 

11.4.7 VPN-based solutions 

For the sake of completeness, we report here also VPN-based solutions, such as EdgeVPN 
[100]. The most advanced solutions in this space can create a mesh between different sites, 
which can be clusters in our case, hence mimicking what can be obtained with Submariner 
and Cilium Cluster Mesh. 

With respect to FLUIDOS, the most important limitation of the above technologies is their 
scope, limited to the creation of a network fabric, leaving all the rest to other components. 

11.4.8 Rancher Fleet 

Rancher Fleet [84] is an engine for managing containers and their deployment. Its main 
purpose is to provide users with more control over the local cluster and constant monitoring 
through GitOps. Fleet is designed not to only offer scalability but also to give users a high 
degree of visibility and control to monitor exactly what is installed on the cluster. 

Fleet can handle the management of deployments of raw Kubernetes YAML, Helm charts, 
Kustomize, or any combination of the three, directly from a Git repository. Regardless of the 
source, all resources are converted dynamically into Helm charts. Helm is used as the engine 
to deploy all resources in the cluster, ensuring that users have a high degree of control, 
consistency, and auditability. 

Fundamentally, Fleet consists of a set of Kubernetes custom resource definitions (CRDs) and 
controllers that manage GitOps for a single Kubernetes cluster or a large-scale deployment 
of Kubernetes clusters. It is a distributed initialization system that makes it easy to customize 
applications and manage HA clusters from a single point. 
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Figure 63. Rancher Fleet: architecture. 

With respect to FLUIDOS, this solution helps users in the management of multiple clusters 
from a single interface, but it does not allow the management of multiple clusters as if they 
were a single one. In other words, it provides visibility across clusters, but there is no provision 
of a unified network, service and storage fabric: all clusters are, and remain, isolated silos. 

11.4.9 Open Cluster Management 

Open Cluster Management (OCM) [85] is an extensible platform designed for orchestrating 
Kubernetes multi-clusters. In OCM, the control plane of the multi-cluster is referred to as the 
Hub, while the individual clusters managed by the Hub are known as Klusterlets. The Hub 
Cluster refers to the cluster that runs the multi-cluster control plane, while the Klusterlets are 
the clusters managed by the Hub Cluster. Klusterlets are responsible for pulling the latest 
instructions from the Hub Cluster and consistently ensuring that the physical Kubernetes 
cluster is reconciled to the expected state. Typically, the Hub Cluster is a lightweight 
Kubernetes cluster that hosts only a few critical controllers and services. 

The OCM approach separates multi-cluster operations into two parts: computation/decision 
and execution, according to a hub-and-spoke architecture. The hub cluster only stores the 
instructions for each cluster and the klusterlet agent carries out the actual execution against 
the target cluster. This reduces the burden on the hub cluster and makes it possible to manage 
large clusters. Each klusterlet works independently, so it is not reliant on the availability of the 
hub cluster. Even if the hub cluster becomes unreachable, the klusterlet can continue 
managing the hosting cluster. This is beneficial when the hub and managed clusters are 
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owned by different admins since the klusterlet can be easily monitored and controlled. In the 
event of an accident, the klusterlet admin can disconnect from the hub without affecting the 
entire multi-cluster control plane. 

 

Figure 64. Open Cluster Management: architecture. 

The architecture based on hub agents has the advantage of reducing the network 
requirements for registering a new cluster to the hub. This means that any cluster capable of 
accessing the hub cluster endpoint can be managed without much difficulty. This is achieved 
through the prescriptions being pulled from the hub rather than pushed. 

With respect to FLUIDOS, this solution helps users in the management of multiple clusters 
from a single interface, but it does not allow the management of multiple clusters as if they 
were one. Thus, it provides only a partial matching of the FLUIDOS goals. 

 

 


