

 Grant Agreement No.: 101070473

Call: HORIZON-CL4-2021-DATA-01

Topic: HORIZON-CL4-2021-DATA-01-05

Type of action: HORIZON-RIA

OPEN CALL FLUIDOS OVERVIEW

Revision: v.1.0

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 2 of 26

TABLE OF CONTENTS

1 THE FLUIDOS COMPUTING CONTINUUM ... 3

1.1 Deployment transparency .. 3

1.2 Communication transparency .. 3

1.3 Resource availability transparency ... 4

2 FLUIDOS ARCHITECTURE .. 6

2.1 Interactions Among FLUIDOS Nodes .. 6
2.1.1 Horizontal interactions ... 6
2.1.2 Vertical interactions .. 7

2.2 Architecture Overview ... 7
2.2.1 Relevant Documentation ... 9

2.3 FLUIDOS at The Edge ... 10
2.3.1 Relevant Documentation ... 10

2.4 THE FLUIDOS NODE ... 11
2.4.1 Relevant Documentation ... 12

2.5 THE FLUIDOS CONTINUUM .. 12
2.5.1 Relevant Documentation ... 13

2.6 TRUST, SECURITY AND PRIVACY .. 13
2.6.1 Relevant Documentation ... 15

2.7 ENERGY AND CARBON AWARE ... 15
2.7.1 Relevant Documentation ... 16

3 EARLY ADOPTERS ... 17

3.1 TERRAVIEW .. 17
3.1.1 Use Case Description ... 17
3.1.2 Use Case Problem .. 17
3.1.3 Current Approach .. 18
3.1.4 The FLUIDOS Approach .. 19

3.2 RSE ... 20
3.2.1 Use Case Description ... 20
3.2.2 Use Case Problem .. 21
3.2.3 Current Approach .. 21
3.2.4 The FLUIDOS Approach .. 21

3.3 ROBOTNIK ... 22
3.3.1 Use Case Description ... 22
3.3.2 Use Case Problem .. 22
3.3.3 Current Approach .. 23
3.3.4 The FLUIDOS Approach .. 24

4 OPEN CALLS: RESEARCH CHALLENGES AND USE CASES 25

5 PUBLIC DOCUMENTATION AND QUICK START .. 26

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 3 of 26

1 THE FLUIDOS COMPUTING CONTINUUM

At first sight, the computing continuum seems to be a reality today, without the
necessity of big investments in terms of technology and research. For instance,
many software applications already rely on multiple components that are installed
and operated in different locations (e.g., data gathering at the far edge, data
aggregation at the telco edge, deep data processing in the cloud), hence
apparently already implementing a computing continuum.

This section highlights how the FLUIDOS approach to Computing Continuum
(a.k.a., liquid computing) has three distinctive characteristics that are not matched
by existing approaches.

1.1 DEPLOYMENT TRANSPARENCY

When an application composed of multiple microservices such as in Figure 1 is
deployed in the current silos-based computing continuum, each component must
be explicitly configured to land on a specific target, e.g., edge datacenter vs.
cloud. The location of each component is therefore fixed and decided a-priori; no
modifications are allowed with respect to the location of each different
component, unless starting a new re-deployment phase. Consequently, any
possible dynamic optimization that could be carried out at run-time is more
complex, as it requires the presence of an overarching orchestrator that re-deploys
all the required components in the new optimal location, which is something that
does not exist with the current technology.

Instead, the FLUIDOS intent-based interface guarantees that each micro-
service is started in the best location and provides also dynamic optimizations
if required. Hence, DevOps have simplified operations with FLUIDOS, as all
services leverage a single point of deployment and control, while the FLUIDOS
“magic” will start the above services in the most appropriate location given the
service requirements and the infrastructure status.

FIGURE 1. COMPUTING CONTINUUM: DEPLOYING APPS WITH TRADITIONAL APPROACH VS. FLUIDOS.

1.2 COMMUNICATION TRANSPARENCY

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 4 of 26

The communication between different microservices is different whether they
belong to the same communication space (e.g., the same Kubernetes cluster) or
not. For instance, by default, all the communications inside a cluster are allowed,
while all the communications from external components are forbidden.
Furthermore, a service that accepts communications from inside the cluster
requires primitives (e.g., the Kubernetes ClusterIP service) that are different from
the ones used to accept data from outside the cluster (e.g., the Kubernetes
NodePort or LoadBalancer services). Therefore, services must be explicitly
configured to talk to each other based on their respective location, hence further
complicating the actions required to carry out a possible re-deployment of the
components mentioned above. It is worth mentioning that some technologies can
partially overcome this problem, e.g., when communication among micro-services
occurs through message brokers (e.g., technologies based on publish/subscribe
primitives, such as Kafka). However, this requires all the micro-services to rely on
the above communication primitives, which is not always possible because of the
intrinsic characteristics of the pub/sub technology (e.g., cannot guarantee reduced
latency), or because applications do not use this technology (e.g., they are based
on HTTP or gRPC protocols).

The FLUIDOS approach to the computing continuum is visible in the right part of
Figure 2: a virtual cluster spanning across multiple real clusters is envisioned, and
applications are operating on the above virtual space. With FLUIDOS, all
communications between micro-services are mediated by the FLUIDOS virtual
network fabric, which guarantees seamless communications independently
from the location of each microservice. Hence, the communication between two
services belonging to the same virtual space happens as they were inside the same
cluster, hence avoiding the necessity of complex and error-prone configurations
no matter if they are deployed in the same cluster, or in two separate clusters.

FIGURE 2. COMPUTING CONTINUUM: SERVICE-TO-SERVICE COMMUNICATIONS WITH TRADITIONAL APPROACH VS.
FLUIDOS.

1.3 RESOURCE AVAILABILITY TRANSPARENCY

With the current technology, each microservice can use only the resources that are
inside its own cluster. This statement holds for both normal operations (e.g., when
the service is started), and when an update (e.g., automatic scaling) is requested.
This behaviour prevents a service from using available resources located in other
parts of the continuum, hence possibly ending up in a service disruption even in
the presence of available resources, but located elsewhere in the continuum.

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 5 of 26

This problem is not very important in cloud datacenters, where it is very unlikely to
run into a lack of resources. Even in the case of small clusters obtained by
acquiring only a small subset of the datacenter resources, the problem is irrelevant
thanks to the capability to (automatically) resize the cluster, e.g., by
adding/removing worker nodes to the given cluster. Instead, this problem is more
important when considering a small pool of resources available at the edge, in
which usually a few servers are available. The capability to acquire new physical
resources, when needed, can only be achieved by leveraging other worker nodes
possibly available in the closest vicinity.

FLUIDOS overcomes the above limitation by enabling the creation of a virtual
computing space spanning across multiple physical domains, hence enabling
a service (which has been started in the virtual space) to leverage all the
resources belonging to the same virtual domain, independently from their
physical location. Hence, in FLUIDOS a service can seamlessly scale based upon
the availability of resources within the entire virtual infrastructure, e.g., ending up
having one instance running in the telco edge, and another in the cloud
datacenter, hence blurring the current rigid cluster boundaries.

FIGURE 3. COMPUTING CONTINUUM: AVAILABLE RESOURCES WITH TRADITIONAL APPROACH VS. FLUIDOS.

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 6 of 26

2 FLUIDOS ARCHITECTURE

This section presents the main interactions envisioned in FLUIDOS and the main
components in the FLUIDOS architecture.

2.1 INTERACTIONS AMONG FLUIDOS NODES

FLUIDOS nodes interact with each other according to two dimensions, horizontal
and vertical, building a virtual continuum that can be completely decentralized,
without any single point of control. In the following, we present an initial definition
of the high-level concepts inherent in horizontal and vertical interactions.

2.1.1 Horizontal interactions

The horizontal (east-west) interaction enables the creation of a fluid domain
among peers, which can share their resources and services, or part of them, based
upon a set of policies (e.g., enable sharing from node X but not from node Y).
Horizontal interactions are carried out according to a peer-to-peer paradigm,
hence without the need for any centralized entity that controls and supervises the
entire process. Applications started on a FLUIDOS node can leverage any
resource, either local or remote, available in the new virtual space. The FLUIDOS
orchestrator is responsible for determining the best location for each component
based on (i) the features requested through the intent-based API (e.g., computing
power, maximum latency between components and toward end users, resiliency
properties, number and location of replicas, reduction of energy and costs or
carbon, etc.) and (ii) the additional policies set for the creation of the virtual space
and/or the offloading of any component (e.g., no offloading on un-trusted
domains for critical components).

The establishment of a peering relationship is a multi-step process, which mainly
involves the following phases:

• Discovery, allowing to discover the existence of other peering
candidates.

• Negotiation, enabling FLUIDOS nodes to issue requests for resources
and/or services to other nodes, which in turn advertise their available
capabilities.

• Reservation and contract signing, formalizing the acceptance of an
offer from a FLUIDOS node, and possibly agreeing on compensations.

• Peering, establishing the virtual fabrics required to enable seamless
workload offloading to remote nodes (e.g., networking, storage, …).

• Usage, leveraging the resources and services acquired by other
FLUIDOS nodes to satisfy service requests.

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 7 of 26

• Depeering, tearing down the previously established computing
continuum abstractions, which are no longer necessary.

2.1.2 Vertical interactions

The vertical (north/south) interaction introduces new concepts such as
aggregation and hierarchical scaling into the picture. A fluid domain can be
created by a FLUIDOS “supernode” that aggregates multiple nodes, hence
exporting a virtual space that is the union of the resources (and services, objects) of
the composing nodes. The supernode-backed fluid domain is created with the
same mechanisms already in place for the horizontal interactions; individual nodes
are still in control of their own resources (ownership principle) and can withdraw
them (if allowed by the signed contract). In addition, a special “tethered mode”,
available upon explicit configuration, allows individual nodes to be completely
controlled by the supernode, giving up their local intelligence (and thus autonomy
and ownership) in exchange for a simplified control plane. This mechanism, for
instance, would be used to bring resource-constrained devices, such as micro-
controllers, into the FLUIDOS ecosystem.

The aggregation paradigm can be applied recursively, with “supernodes”
becoming part of a bigger “hyper-fluid domain”, managed by an “hypernode” (or
controlled, if the “tethered mode” is enabled), for a theoretically endless number
of hierarchical levels. This provides the foundation for the hierarchical scaling
property of FLUIDOS (recursive hierarchical architecture, from a single device to
domains of domains). In this respect, the north/south interface, which enables
interactions with different nodes (either local devices, clusters or other FLUIDOS
“supernodes”) all featuring the same interface, will be backed by novel resource
aggregation algorithms that can aggregate the resources of each single node
(normal, super, etc) in a scalable way.

Finally, a FLUIDOS Broker is an aggregation, consolidation, and brokering (i.e.,
reselling) point that supports also interactions between multiple administrative
domains, whose duties include the capability to (1) observe the resources offered
by many domains and the associated performance when involved in task
offloading; (2) to monitor (and predict) the quality of network connections; (3) to
suggest the “best node” when asked for an offloading request. However, given
that super/hyper nodes include brokering activities albeit limited within the
boundaries of a single admin domain, FLUIDOS will reuse for the above nodes the
great part of algorithms (and software) developed for the Broker, assigning to this
component a major role in the architecture.

2.2 ARCHITECTURE OVERVIEW

A FLUIDOS node builds on top of Kubernetes, which takes care of abstracting the
underlying (physical) resources and capabilities in a uniform way, no matter
whether dealing with single devices or full-fledged clusters (and the actual
operating system) while providing at the same time standard interfaces for their

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 8 of 26

consumption. Specifically, it properly extends Kubernetes with new control logic
responsible for handling the different node-to-node interactions, as well as to
enable the specification of advanced policies and intents (e.g., to constrain
application execution), which are currently not understood by the orchestrator.

Given this precondition, the main architectural components of a FLUIDOS node
are depicted in Figure 4 and converge around the Node Orchestrator and the
Available Resources database. The former is in charge of orchestrating service
requests, either on the local node or on remote nodes of the same fluid domain,
coordinate all the interactions with local components (e.g., local scheduler) and
remote nodes (e.g., to set up the computing/network/storage/service fabrics), and
make sure that the service behaves as expected (e.g., honoring trust and security
relationships). The latter keeps up-to-date information about resources and
services available either locally or acquired from remote nodes, following the
resource negotiation and acquisition process. Additional modules (and their
companion communication interfaces), are required to handle the discovery of
other FLUIDOS nodes and carry out the resource negotiation process, to monitor
the state of the virtual infrastructure and to make sure that offloaded
workloads/services behave as expected both in terms of security and negotiated
SLAs, to take care of security and privacy issues (e.g., isolation), and to create the
virtual continuum within the fluid space.

FIGURE 4. FLUIDOS ARCHITECTURE

The discovery manager is the module responsible for the discovery of other
FLUIDOS nodes, producing as output a local database of feasible peering
candidates. Specifically, each peering candidate is characterized by a globally
unique identifier, the set of parameters necessary during the peering and resource
acquisition phase (e.g., target network endpoints, …), as well as a set of
distinguishing features (e.g., geographical location, whether it is available to sell
computing resources, specific hardware functionalities or software services), and
possibly including pricing/billing models. These features are expected to be
exposed at a high level (e.g., through generic key/value labels); and enable both

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 9 of 26

an initial policy-driven filtering (i.e., excluding undesired nodes from the list of
peering candidates) and a priori filtering and ranking during the resource
acquisition phase.

The node orchestrator is the FLUIDOS module responsible for the orchestration
of the service requests, either on the local node, or offloading them to a remote
FLUIDOS node, based on the current snapshot of the available resources
database. Additionally, it interacts with and coordinates other components, mainly
the resource acquisition manager, to trigger the acquisition of new resources and
the setup of the appropriate network and storage fabrics enabling transparent
execution continuum, in case already available ones are not sufficient to satisfy the
incoming request.

The resource acquisition manager is the FLUIDOS module responsible for the
negotiation process performed to acquire resources and services from remote
FLUIDOS nodes. It can be triggered either proactively, based on policies, to ensure
that a given amount of resources (with certain characteristics) is always available to
fulfil foreseen future requests, or by the node orchestrator, reacting to the lack of
matching resources to satisfy a service request.

The virtual fabric manager is the FLUIDOS component in charge of establishing
the computing continuum abstractions to enable the seamless execution of
workloads spread across multiple nodes. Specifically, it acts once a resource offer
is accepted by the resource acquisition manager, and appropriately sets up the
virtual node abstraction, along with the network and storage fabrics through the
interaction with the remote node.

The privacy and security manager is the FLUIDOS module, investigated and
detailed in section 2.6, which is in charge of guaranteeing the security of the
different parties involved in the resource continuum, and it is intertwined with all
the other different processes. This task is additionally fulfilled through the
interaction with the trust and security agent, a trust anchor part of each FLUIDOS
node that certifies the correctness of predefined operations.

The telemetry service is the FLUIDOS component responsible for the monitoring
of the infrastructure (e.g., actual CPU load, memory, network, as well as possibly
more detailed indexes such as memory page faults), including the collection of all
the observability parameters key to enforce and verify the satisfaction of the
workload requirements expressed through the intent-based API.

The Cost Manager is the FLUIDOS module responsible for evaluating the burdens
of carrying out a computational load on a node. Hereby, the burdens can be both
monetary and non-monetary.

2.2.1 Relevant Documentation

Additional details on the FLUIDOS architecture can be found in:
• Deliverable 2.1, available on the website here.
• Documentation on GitHub here.
• REAR protocol for resource Advertisement/Reservation on GitHub here.

https://www.fluidos.eu/public-deliverables/
https://github.com/fluidos-project/Docs
https://github.com/fluidos-project/REAR

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 10 of 26

2.3 FLUIDOS AT THE EDGE

In many sectors (such as industrial control environment, smart city, smart
agriculture, etc.), cloud computing has proven unprecedented cost-effectiveness
and flexibility to users, nevertheless, it fails in all use cases where latency is
important or where the bandwidth is an issue. For such a reason in the coming
years, we expect to see more and more applications and services that require
moving computation from the cloud to the edge. FLUIDOS at the Edge provides a
way to extend cloud infrastructure by creating a continuum to the edge, managing,
and deploying applications seamlessly across both cloud and edge environments.

The heterogeneity of edge devices largely contributes to the complexity of the task
since the Edge can be broken down into 3 sublayers known as Meta Edge, Deep
Edge, and Micro Edge. Edge devices belonging to these sublayers can be
distinguished according to the degree of distribution and decentralization of the
computation. For instance, the devices at the Micro edge, referred to as IoT edge
devices, include sensors (e.g., temperature, inclinometer, pressure), MEMS,
wired/wireless communication, ADC, microphone, or cameras, with a low cost/low
power microcontroller. Deploying containerized applications on edge devices with
existing solutions like KubeEdge is a way to build a baseline continuity from the
cloud to the edge. However, the vanilla version of KubeEdge has many limitations,
including, the limited support of the well-known IoT protocols such as (LoRA,
sigfox, Bluetooth, MATTER), with the associated limitations to manage the
heterogeneity of IoT Edge devices. For this reason, FLUIDOS improves and
extends several components of the vanilla KubeEdge.

Modern IoT Edge devices can share raw sensor data or the computed values with
different applications. Such computed data may include simple raw sensor values
(e.g., temperature, humidity, …) or the computed outcome of a fusion AI
algorithm. It is important to point out that, compared to the current solutions, the
developed FLUIDOS at the Edge will enable the multicasting operations for
sharing the pre-processed, computed data or raw data between several
applications with a single data transmission from the Far Edge to the cloud. This
would result in a significant reduction in power consumption, requiring fewer IoT
edge devices and reducing the amount of data transmitted towards cloud
applications.

Managing data at the edge is a challenging task due to the large number of
connected devices that capture and send data for analysis and decision-making
towards the cloud. Although projects like K3s offer complete Kubernetes instances
for edge devices, several factors contribute to complex data management. These
factors include the increasing variety of IoT devices, the coexistence of different
wireless technologies and protocols, as well as the presence of specific operating
systems and services. Therefore, the FLUIDOS architecture for the Edge introduces
an innovative solution for implementing the continuum at the edge to deal with the
above challenges.

2.3.1 Relevant Documentation

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 11 of 26

Additional details on the FLUIDOS architecture at the edge can be found in:
• Deliverable 2.1, available on the website here.
• Installation guide on GitHub here.
• Prototype implementation on GitHub here.
• Sample of development kit and reference design of an IoT Edge device based

on STM32 available on request.

2.4 THE FLUIDOS NODE

The objectives of the development of the FLUIDOS node can be summarized in
the following:

• Define what is needed to “fluidify” the underlying infrastructure.

• Define abstractions and models to describe resources and services
exported by each domain in order to enable a consumer to connect and
consume the above resources/services.

• Define two sets of APIs: southbound to ensure metrics collection and
northbound to facilitate the exposure of those metrics, objects, and
service abstractions to FLUIDOS “supernodes” (Brokers).

• Leverage a broker node to increase scalability and support aggregation
of simple nodes.

Starting from the outcomes of the development of previous section, the this work
stream should formulate the design of FLUIDOS Core Services. This includes
defining the primary functional elements, establishing their interrelationships, and
outlining the overarching operational logic. The goal is to facilitate modularity and
enable the "fluidification" of resources within the FLUIDOS system. Subsequently,
the task will focus on crafting interfaces and associated software components
necessary for aggregating and coordinating FLUIDOS node resources.
Southbound APIs will be developed to gather metrics from the underlying layer
(e.g., CPU, storage, physical objects, software services) and issue appropriate
commands to the hosting platform (e.g., full virtualization in the host OS). On the
other hand, Northbound APIs will aggregate these metrics in a hierarchical model,
making them accessible for consumption by upper nodes.

Each FLUIDOS domain is mandated to present its own resources and services.
External entities, including end customers and foreign domains, have the option to
consume these resources, potentially involving some form of economic exchange.
The resources and services are designed to be versatile, encompassing various
objects such as network connectivity, data center resources (e.g., CPU, storage),
physical objects (e.g., IoT devices), and software services (e.g., data stores,
databases, analytics, etc.). As a consequence, we will define the abstractions and
models necessary to describe the resources and services exported by each
domain, facilitating foreign customers in connecting and utilizing the
aforementioned resources and services. The chosen programmability models will

https://www.fluidos.eu/public-deliverables/
https://github.com/fluidos-project/fluidos-edge/tree/main/doc/installation-guide
https://github.com/fluidos-project/fluidos-edge

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 12 of 26

provide a unified abstraction of different programmability paradigms, potentially
through an ontology that is easily extensible to accommodate future requirements
or custom objects/properties.

The provided implementation would then enable both mixed broker and peer-to-
peer architectures. A prototype broker (or supernode) will be developed to
enhance scalability and simplify deployment, especially in the case of constrained
devices, while potentially reducing overhead and congestion. In a brokerized
scenario, FLUIDOS nodes delegate resource allocation and policies to the broker,
enabling aggregation and control on a broader scale. This approach empowers a
locally decentralized environment, potentially extending to cross-domain
scenarios, where business decisions can be truly intent-based.

2.4.1 Relevant Documentation

Additional details on FLUIDOS can be found in:
• Documentation on GitHub here.
• Implementation of the node functionalities on GitHub here.
• FLUIDOS Ontology on GitHub here.
• REAR protocol for resource Advertisement/Reservation on GitHub here.

2.5 THE FLUIDOS CONTINUUM

The objectives of this work stream can be summarised in the following:

• Define the decentralised interactions between FLUIDOS instances whether
in the “horizontal” domain, i.e., direct peering among FLUIDOS instances, or
in the “vertical” domain enabled by hierarchical stacking of multiple
FLUIDOS instances.

• Deploy hyper-distributed applications and services within a virtual
continuum (computing, storage, network, and services) spanning across
devices, edge/cloud resources, and FLUIDOS instances.

• Define and develop APIs/protocols that handle the interaction between
user/service developers and FLUIDOS as well as between the FLUIDOS
instances themselves.

• Design intent-based and policy-based service meta-orchestration and
provisioning.

• Enable AI-assisted orchestration and proactive provisioning of edge
resources, enabled by AI for prediction, traffic forecasting, and, possibly,
mobility prediction (e.g., for drones and AVs) to optimally allocate and place
resources.

• Augment AI-based methods with privacy and security capabilities.

https://github.com/fluidos-project/Docs
https://github.com/fluidos-project/node
https://github.com/fluidos-project/fluidos-ontology
https://github.com/fluidos-project/REAR

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 13 of 26

In detail, this requires first defining the essential components responsible for
managing the FLUIDOS continuum, along with detailing the compositions and
interactions of these elements across multiple nodes (e.g., network fabric, storage,
and service continuum). Additionally, the task will craft protocols to facilitate
functionalities like node discovery, resource aggregation, and task offloading. As
part of its scope, techniques for confidentiality-preserving service monitoring and
service assurance will be designed and developed. The interfaces and interactions
with the security and privacy components outlined in below will be identified and
defined. Lastly, exploration and integration with North/South-bound scalability and
the structure of supernodes (broker) will be undertaken.

Furthermore, the outcome of this work stream will empower intent-based service
orchestration by translating desired intents into corresponding policies. This
translation encompasses converting specific performance goals, expressed in
terms of predefined Key Performance Indicators (KPIs) related to latency,
throughput, energy consumption (in collaboration with energy and carbon aware
workstream), and security (in collaboration with trust, privacy, and security
workstream), into policies. The subsequent optimization will be conducted through
deterministic or fuzzy approaches based on machine learning. Policy reasoning for
consistency checks will be established, with policy-based orchestration relying on
optimization models that define mathematical programming problems and
algorithmic solutions. These solutions will consider a set of constraints derived
from specified policies and requirements inferred from desired intents. Machine
learning-based approaches and approximation algorithms can be leveraged in
these solutions.

In addition, a deep focus will be devoted to AI-based algorithms for resource
allocation, task scheduling, or anomaly detection, taking into account privacy
constraints in the orchestration process. To achieve this, existing AI-based
approaches used for orchestration will be modified to suit the FLUIDOS
framework, incorporating privacy constraints into algorithm design and training.
For privacy preservation, techniques such as federated learning, where FLUIDOS
nodes collaboratively train AI models without exchanging or collecting data, or
differential privacy techniques, involving the addition of noise to data samples, will
be employed.

2.5.1 Relevant Documentation

Additional details on FLUIDOS can be found in:
• Documentation on GitHub here.
• FLUIDOS Ontology on GitHub here.
• Implementation of the node functionalities on GitHub here.

2.6 TRUST, SECURITY AND PRIVACY

The objectives of this workstream can be summarized in the following:

https://github.com/fluidos-project/Docs
https://github.com/fluidos-project/fluidos-ontology
https://github.com/fluidos-project/node

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 14 of 26

• Design and implement zero-trust authenticated access to geographically
distributed resources.

• Develop an isolated and trusted environment for the execution of workloads
over horizontally distributed FLUIDOS instances.

• Provide monitoring techniques and anomaly detection and mitigation
mechanisms to protect FLUIDOS nodes.

• Design algorithms and procedures providing QoS-aware orchestration of
security functions.

Specifically, this workstream explores the establishment and monitoring of trust
between nodes. It aims to deliver a secure and scalable solution for resource
access control in a highly dynamic and distributed Edge/Cloud scenario, enforcing
domain-specific access control policies in line with the zero-trust paradigm. It
defines the components within the FLUIDOS architecture responsible for enforcing
access control policies, privacy management, and data sharing. These
components, part of the FLUIDOS Privacy and Security Manager, will include a
Distributed Authorization Engine, functioning as a lightweight Policy Enforcement
Point (PEP) to enable authorization within the Attribute-based Access Control
model (ABAC).

One of the main objectives is to ensure the secure execution of workloads,
requests, and response messages across the FLUIDOS ecosystem by maintaining
confidentiality and integrity. Confidentiality aspects include securing the execution
of workloads, handling input requests, managing work order responses, and
overseeing secret key management. Integrity considerations involve safeguarding
the worker registry, work order queue, and network communication within the
FLUIDOS ecosystem. These security properties are being achieved by leveraging
Trusted Execution Environments (TEEs), with consideration for different
implementations such as AMD-SEV or ARM Trustzone. Additionally, we explore the
authenticity of code and hardware through remote attestation mechanisms to trust
the execution of applications within secure enclaves. Attestation of FLUIDOS
container execution covers secure provisioning of secrets, file system encryption,
and authentication. Lastly, the secure communication between horizontally
distributed FLUIDOS instances running in different environments will be evaluated.

Another aspect of this work package involves identifying and mitigating security
and privacy threats targeting the FLUIDOS container-based infrastructure. Given
the limited isolation containers provide, we analyse existing mechanisms like
SELinux, Apparmor, and Seccomp to enhance the security of the host OS kernel.
Novel techniques are being proposed to define and enforce dynamic, fine-grained
security policies to ensure secure execution of containerized applications,
adhering to the principle of least privileges and the zero-trust paradigm.
Additionally, the task is exploring privacy leakages within the FLUIDOS container
environment and propose techniques to quantify and minimise such leakages,
particularly relevant in the context of confidential computing.

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 15 of 26

At the same time, a malicious user could attempt to disrupt the proper functioning
of a FLUIDOS node or target other services within the infrastructure. In this context,
this workstream has been working on AI-based threat and anomaly detection
solutions. Specific emphasis has been given to balancing the trade-off between
detection accuracy and monitoring depth, with the goal of achieving precise
detection while maintaining a high level of effectiveness in mitigation. The usage of
federated learning to train a model for threat detection across different
administrative FLUIDOS domains is also being proposed.

Recognising that methods for threat and intrusion detection can be evaded
(through adversarial machine learning, for instance), generate a substantial
number of alarms, and are vulnerable to zero-day attacks, we are putting forth a
proposal to augment them with a cloud-native approach to cyber-deception. This
approach relies on orchestration capabilities to offer a resource-aware strategy for
creating and deploying decoys.

Finally, this workstream delves into the design of orchestration algorithms for
activating security services on applications running on FLUIDOS. The goal is to
ensure adequate protection against cybersecurity threats while considering both
application-level and infrastructure-level parameters.

2.6.1 Relevant Documentation

Additional details on FLUIDOS can be found in:
• Documentation on GitHub here.
• Relevant repositories on GitHub here.

2.7 ENERGY AND CARBON AWARE

The objectives of this workstream can be summarized in the following:

• Define an energy- and carbon-aware computation model that can shift
loads both in time and geography.

• Devise cost-effective infrastructure optimisations for industrial
environments.

• Use Artificial Intelligence and Machine Learning methods for
performance prediction and enhancement.

This workstream will create an energy- and carbon-aware computing model within
the FLUIDOS framework. In addition to presenting its own resources, each
FLUIDOS domain will communicate the current carbon intensity of its electricity
(measured in grams of CO2 per kilowatt-hour), which varies across locations due to
specific electricity mixes and fluctuates hourly at each location. This model goes
beyond the inherent energy-saving features of FLUIDOS, providing the capability
to optimize energy consumption and carbon emissions in edge computing.
FLUIDOS will utilize this model to perform load shifting both in time and

https://github.com/fluidos-project/Docs
https://github.com/fluidos-project/cyber-deception

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 16 of 26

geography, capitalizing on nodes close to energy sources or powered by a
significant share of renewable energy. The task will design the energy- and carbon-
aware model, outlining its main functional elements and additional technical
specifications, including functionalities and interfaces.

In tandem with the focus on energy and carbon efficiency, this task aims to reduce
infrastructure costs. These savings will arise from the inherent resource and energy
efficiency of FLUIDOS and additional efficiency measures from the previous task.
For example, some nodes may employ less powerful CPUs and offload tasks to
nearby nodes, resulting in overall energy and cost reduction. While there is often
synergy between OPEX cost savings and energy/carbon savings, depending on
electricity prices, conflicts may arise. To address these potentially conflicting goals,
the energy- and carbon-aware computing model of FLUIDOS will enable setting
fine-granular priorities and reflecting desired trade-offs between the two when
relevant.

Furthermore, the work package will delve into the training of artificial intelligence
and machine learning models for two purposes. Firstly, to learn from past loads
and predict the energy demand of future edge computing tasks. Secondly, to
compare and learn from strategies used by other nodes for achieving better
individual and overall energy efficiency. The outcomes of the energy demand
prediction task will contribute to the model from the previously described tasks,
which communicate the energy, carbon, and costs of edge computing tasks with
the aim of overall minimization.

2.7.1 Relevant Documentation

Additional details on FLUIDOS can be found in:
• Documentation on GitHub here.
• Relevant repositories on GitHub here and here.

https://github.com/fluidos-project/Docs
https://github.com/fluidos-project/fluidos-energy-assessment
https://github.com/fluidos-project/fluidos-energy-predictor

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 17 of 26

3 EARLY ADOPTERS

What follows here is a general description of the early adopter of the FLUIDOS
project.

3.1 TERRAVIEW

3.1.1 Use Case Description

TerraviewOS, is a unified platform for viticulture, enables the grower to manage
information from many sources, returning high-value info such as yield estimation,
smart irrigation, and disease prediction and diagnosis. Since TerraviewOS is cloud-
based, a key problem is the interaction with on-field devices in the presence of
poor network connectivity. Operations such as drone aerial surveys (approximately
30-40GB of data for a modest area of 10 hectares) may return their valuable results
with large delays, resulting in potentially poor user experience or indeed non-
operation for customers.

3.1.2 Use Case Problem

In the following diagram, the use case’s scenario is described. The scenario shows
a conceptual representation of a distributed computing architecture, "edge"
architecture. In this scenario there are 3 nodes, each providing the TerraviewOS
service to an individual and different customer. These nodes are computing units
that a customer can either purchase or lease from Terraview. These nodes are
connected over different networking technologies depending on what is available
at the customer site. They are connected to the central TerraviewOS service. At the
local node specific functionality of TerraviewOS is executed and other functionality
is provided by the core TerraviewOS service shown as the top box in the diagram.

Each FLUIDOS node is represented by one customer, a customer having one or
more vineyards to manage. Each customer is isolated yet connected to shared
computational resources that are provided by Terraview. The goal of this scenario

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 18 of 26

will be to deliver an edge architecture that integrates the central service delivered
by the technology of FLUIDOS and solves the following problems.

• No simple and integrated network fabric over cloud continuum.

FLUIDOS will provide an integrated Network Fabric over Cloud Continuum.
The current landscape lacks a unified network fabric across the cloud
continuum, leading to connectivity and interoperability challenges. The
smart viticulture use case involves using the FLUIDOS unified networking
framework to streamline data transfer and resource management across
various cloud services, from private to public clouds and edge computing.
This shows the simplification of multi-cloud management and ensures
reliable network behaviours.

• No easy way to define and manage a cloud continuum application.

Today, there is no straightforward method for managing applications in
cloud continuum environments, complicating resource utilisation and
application lifecycle management. The smart viticulture use case will take
advantage of the FLUIDOS technology for easy application definition,
deployment, orchestration and management across different cloud models.
It will include intuitive interfaces, standard templates, automated
deployment tools, and robust monitoring for optimal application
performance in distributed cloud environments.

• Deficit of security, privacy or trust.

Significant concerns around security, privacy, and trust hamper cloud
computing's effectiveness. The mart viticulture use case will focus on
integrating advanced security frameworks (TEE/TPM, anomaly detection etc)
for robust encryption, secure data handling, and strict access controls. It will
also incorporate privacy-preserving technologies and comply with
international data protection laws to enhance user trust and ensure data
integrity in the cloud.

3.1.3 Current Approach

The current approach faces many limitations:

• Everything is centralised.

The current centralised system architecture concentrates all services and
processing in one location, leading to potential system failures and latency
issues. A revised technical use case would explore decentralised
architectures to distribute processing across multiple nodes. This would
improve system resilience, reduce latency, and offer a scalable solution for
geographically dispersed users.

• All data resides with the service provider.

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 19 of 26

With all data stored by the service provider, concerns arise about privacy
and security. The technical use case should develop a distributed data
storage solution, possibly using blockchain or decentralised databases, to
enhance data security and give users more control. Ensuring data
encryption, access control, and compliance with data protection laws are
key aspects of this approach.

• No reliability on the customer side - network dead, no service.

Dependence on continuous network connectivity leads to service
disruptions during network outages. A technical use case should focus on
offline capabilities or local caching to maintain basic functionalities during
disconnections. Systems designed to operate offline and sync with central
servers once online would ensure uninterrupted service.

• Huge data ingress over limited network connection.

Significant data ingress through limited network connections causes
congestion and inefficiency. The technical use case would look into
optimising data transfer using data compression, selective transmission, or
edge computing to process data closer to its source. This approach aims to
minimise data transfer volume, ease network congestion, and enhance
system performance.

3.1.4 The FLUIDOS Approach

The architecture of TerraviewOS is designed with a focus on efficient and secure
operation across multiple customer on-premise sites leveraging the support
services operated upon centralised cloud infrastructure. At the core of this
architecture lies the concept of the FLUIDOS domain, which encompasses both
customer sites and centralised services.

In this use case, each customer site will host a FLUIDOS node, responsible for
running the majority of TerraviewOS services along with the user interface. These
nodes are designed to ensure security, with data encrypted both at rest and in
transit, and will provide access to necessary centralised services. The backend
services of TerraviewOS will run in the cloud, with a crucial design choice being the
avoidance of one backend instance per FLUIDOS node. This approach aims to
facilitate the secure sharing of workloads and data across FLUIDOS nodes that
reside in the cloud.

The FLUIDOS nodes will be designed to ensure that different nodes cannot
interfere with each other, maintaining a high level of operational integrity and
security. This is further enhanced by the requirement for workloads to run on
Trusted Execution Environments (TEEs), which can be specified in the application
descriptors through intents.

Centralised cloud services of TerraviewOS, operating on a FLUIDOS node, will be
multi-tenant, ensuring a clear separation between different customers. This
separation is pivotal in maintaining data integrity and privacy for each customer.

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 20 of 26

The key objective of this architecture is to minimise any duplication of service
functionality, as such redundancy could lead to inefficiencies, technical debt, and
unnecessary costs.

All deployments for customer sites will be managed centrally, streamlining the
operational process and ensuring consistency across the FLUIDOS domain. This
centralised management approach allows for better control and oversight of the
services provided, ensuring that each customer site operates effectively and
securely within the overarching TerraviewOS ecosystem.

Therefore, the expected advantages can be summarized in the following:

• Business continuity: adapt to network changes, operate without uplink,
and replicate for failover.

This technical use case focuses on maintaining business continuity through
network adaptability, offline operation, and failover replication. The system
should adjust to network fluctuations, ensuring functionality without a
primary network connection, and use alternative communication methods
when needed. Critical operations and data must be replicated across
different nodes to enable seamless service continuation in the event of a
node failure, thereby reducing downtime and data loss.

• Security: raw data stays local, isolation and trusted execution on
network.

Prioritising security, this use case emphasises keeping raw data local and
isolated within the network for enhanced protection. The system is designed
to store and process data locally, minimising external data exposure.
Implementing network isolation techniques like VPNs and secure
environments for data processing, the system ensures data integrity and
confidentiality, protecting against unauthorised access and breaches.

• Decentralisation: local access, no central cloud, reduced network
traffic, workloads at edge and core.

The focus here is on decentralising system architecture to facilitate local
access and minimise network traffic. By distributing workloads between
edge and core, the system reduces data transmission distances, lowers
latency, and optimises network usage. Local processing at the edge
enhances real-time decision-making and lightens the load on central
servers. The design aims for efficient resource management across
distributed nodes, improving performance and scalability.

3.2 RSE

3.2.1 Use Case Description

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 21 of 26

The introduction of a massive number of renewable energy sources such as solar
panels require a highly monitored distribution grid that can coordinate energy
producers and consumers in real-time. This relies on a large number of automatic
measuring devices such as PMUs (Phasor Measurement Units), with real-time data
collection and synchronization carried out by PDCs (Phasor Data Concentrators).
These devices, already in use on the high voltage grid, provide the data used to
compute the grid state estimate for monitoring and control applications.

3.2.2 Use Case Problem

The introduction of PMUs into the distribution network brings about various
challenges, including:

• Scalability

The number of PMUs required for the power grid to be observable is
significantly higher for the distribution case. While hundreds of PMUs are
needed for the Italian transmission network to be observable, the
distribution network requires a number of the order of thousands. This
implies the need to manage a massive amount of distributed devices
and their corresponding data flows.

• Resiliency

With thousands of devices in play, enhancing the resilience of the ICT
infrastructure for data collection is crucial. For instance, managing faults
or planned maintenance should be automated, as well as the possibility
for the above devices when disconnected from the Internet and/or
unable to access companion services running in the cloud.

• Latency

This particular application has strict data latency requirements (of the
order of milliseconds) to enable real-time control of the power grid.

• Cybersecurity

The power grid is a critical infrastructure for the country and, as such,
must be protected from any malicious attack, including the ones
targeting monitoring and control services.

3.2.3 Current Approach

While the Italian transmission grid is centrally managed by a single PDC, the
introduction of PMUs in the distribution grid is still at an experimental level.
Nevertheless, the massive amount of PMUs and PDCs in the future network makes
this centralized approach (a) hardly scalable, (b) not resilient to network failures or
forced disconnections (e.g., to preserve a portion of the network from an ongoing
attack).

3.2.4 The FLUIDOS Approach

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 22 of 26

Traditionally, PDCs were monolithic applications running on dedicated hardware;
however, with the increasing computational power available at lower costs, this is
changing in recent years. Experimental efforts are underway to virtualize
applications and utilize Kubernetes for orchestrating the deployment of PDCs and
real-time analysis applications at the edge. This is aimed at reducing latency issues
and improving resiliency, avoiding the need of operator physical assistance in case
of outages, and paves the way for their usage within a FLUIDOS-based
environment.

In fact, FLUIDOS creates a continuum of resources from the edge to the cloud and
enables the displacement of workloads, such as data collection and analysis
processes, based on specific scenarios (faults, reconfiguration, maintenance). The
main features of the approach enabled by FLUIDOS are:

• Computing Continuum

FLUIDOS would enable PDCs and analysis applications to continue
functioning even if communication with control centers is interrupted by
migrating PDC services to an adjacent node in case of fault.

• Intent-Based Orchestration

FLUIDOS can automatically orchestrate PDCs based on the latency
between the node and PMUs, thereby improving the power grid state
estimate or responding to faults.

• Cybersecurity

FLUIDOS ensures service isolation from other applications on the hosting
node with different usage permissions. It also leverages logging and
anomaly detection capabilities and provides survival capabilities in case
a portion of the grid is disconnected from the main network, hence
preserving its operations in case of a cyber-attack.

3.3 ROBOTNIK

3.3.1 Use Case Description

Mobile robots for Industry 4.0, smart logistics, and retail are resource-constrained
and battery-powered mobile robots that operate in shared spaces with humans
and other IoT devices, such as elevators, automatic doors, and other mobile
robots. For autonomous operation, mobile robots are equipped with sensors and
high-performance computational algorithms that (1) need considerable computing
power and (2) need to be executed at the highest speed.

3.3.2 Use Case Problem

This kind of robotics, by definition, uses battery-powered devices, unlike stationary
robot arms. This adds constraints to an already complicated application. In

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 23 of 26

robotics logistics, idle robots are not productive. And intrinsically, robots need to
charge their batteries to continue working. During this time, the robot is not
available to move things around.

The robot's software is complex and requires heavy computation, so it is
mandatory to equip the robot with powerful enough computing engines that,
however, should limit the consumed power. Onboarding an ultra-low-resource
device will lead to a robot that is not capable of processing the required tasks, and
onboarding an ultra-high-resource device will deplete the battery very quickly.

There is an additional relationship between the computer load and the battery
drain. Heavy computational tasks drain the battery faster.

3.3.3 Current Approach

To solve the above computing problem with the current technology, we can follow
either one of the following two approaches: (a) centralized processing, (b)
individual computing.

• Centralized processing

The robot fleet operates under a centralized communication architecture,
whereby the intelligence (i.e., processing resources and software) is placed
in a central component, such as the fleet manager (or orchestration system).
All communication between the individual robots and the fleet manager is
routed through an intermediary edge or cloud device. In this setup, the
central device acts as a hub that (a) implements processing algorithms, and
(b) facilitates and controls the communication flow within the network.

This centralized approach may introduce a single point of failure and
potential latency issues as all communications must pass through the central
hub, and it is not appropriate when robots may experience connectivity
issues (e.g., poorly connected area in a factory).

• Individual computation

In this approach, robots typically compute everything on the device itself.
This practice, however, may lead at least to three main problems. First,
computational inefficiency, as it may result in scenarios where some robots
remain idle and underused, while others are overwhelmed with
computational tasks, nearing the point of overloading their onboard
computers. Second, over-dimension of the available computing resources
(or, alternatively, the necessity to deploy simplest computing algorithms),
given that the necessary hardware resources to comply with peak
computing demands must be available on the robot itself; alternatively, to
save on the cost of the above hardware, simplest (and less resource-hungry
algorithms, but also less efficient) should be used. Third, excessive battery
usage, as all the processing happens on the robot itself, substantially
draining the battery power, which is particularly important on small robots

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 24 of 26

(with a small-size battery, while computing power for robot navigation and
other algorithms is an invariant with respect to the size of the robot.

3.3.4 The FLUIDOS Approach

The FLUIDOS continuum has the capability to transparently use computing
resources nearby, increasing the overall system's productivity by intelligently and
dynamically externalizing the robotics workload to other devices (e.g., a server at
the factory premises) and/or using the robot's idle time (i.e., when the robot is
docked in the battery charging station) to increase the entire system's
computational capabilities. Each robot can leverage this approach when it is well-
connected to the network, while it can rely on its sole onboard computing
capabilities (which are turned on only upon necessity) when moving in a poorly
connected area.

This approach will lead to a significant decrease in battery usage and an increase
in the robot's computational capabilities beyond its onboard limits, with the
capability to dynamically adapt its computing behavior (i.e., onboard or offloaded)
based on the actual operating conditions.

With FLUIDOS, we can apply the cloud continuum computing approach by
considering each robot as an edge device and intelligently and dynamically
outsourcing robotics workloads to other robots or devices depending on the
environment. This can be achieved without interfering with the robotics task, so
robot developers will be able to run their applications without changing their way
of working.

Instead of using monolithic bare-metal workloads, the robots will use cloud-native
technologies like containerization and Kubernetes to split and dynamically place
the workloads in different devices. All robots will be treated as edge devices that
can accept or externalize workloads, instead of being isolated devices.

Given the potential capability of the FLUIDOS intent-based orchestrator to pursue
different objectives, workload distribution among the different available systems
can be optimized to achieve diverse goals such as:

• Maximize the battery life of the robots.

• Minimize the time it takes for the robots to complete their tasks.

• Ensure that all of the robots are evenly utilized.

• Avoid overloading any individual robot.

Highly dynamic decisions can be envisioned as well. For example, if a robot is low
on battery, FLUIDOS might move its workloads to other robots with more battery
power. Or, if a robot is overloaded, FLUIDOS might move some of its workloads to
other robots that are less busy.

In a nutshell, the FLUIDOS approach to robot workload orchestration enables to
improve the performance, efficiency, and reliability of your entire system.

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 25 of 26

4 OPEN CALLS: RESEARCH CHALLENGES AND USE
CASES

The upcoming FLUIDOS Open Calls, scheduled for launch in December 2023, are
aimed at European high-tech SMEs, researchers, and innovators. FLUIDOS Open
Calls present a unique opportunity for participants to explore the project´s novel
mechanisms for data sharing and processing in the computing continuum.

The FLUIDOS Open Calls aim to achieve the following objectives:

• Facilitate Technological Advancements: Encouraging applicants to offer
additional Open-Source functionalities to be integrated with FLUIDOS,
fostering continuous innovation and expansion of the platform's
capabilities.

• Validate FLUIDOS Architecture: Through the FLUIDOS Use Case call,
applicants will be invited to test and validate FLUIDOS architecture and
software by integrating their own additional software on top of the
FLUIDOS system, exploring new sectors beyond environmental
monitoring, mobility, healthcare, and security.

• Promote Environmental Sustainability: Encouraging participants to
leverage FLUIDOS' minimised energy consumption for data processing
to create business models that are more environmentally sustainable.

FLUIDOS | Open Call FLUIDOS Overview

© 2022-2025 FLUIDOS Page 26 of 26

5 PUBLIC DOCUMENTATION AND QUICK START

Add here anything that might be relevant for an Open Call partner to learn more
about the project.

