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1 THE FLUIDOS COMPUTING CONTINUUM 

At first sight, the computing continuum seems to be a reality today, without the 
necessity of big investments in terms of technology and research. For instance, 
many software applications already rely on multiple components that are installed 
and operated in different locations (e.g., data gathering at the far edge, data 
aggregation at the telco edge, deep data processing in the cloud), hence 
apparently already implementing a computing continuum. 

This section highlights how the FLUIDOS approach to Computing Continuum 
(a.k.a., liquid computing) has three distinctive characteristics that are not matched 
by existing approaches. 

1.1 DEPLOYMENT TRANSPARENCY 

When an application composed of multiple microservices such as in Figure 1 is 
deployed in the current silos-based computing continuum, each component must 
be explicitly configured to land on a specific target, e.g., edge datacenter vs. 
cloud. The location of each component is therefore fixed and decided a-priori; no 
modifications are allowed with respect to the location of each different 
component, unless starting a new re-deployment phase. Consequently, any 
possible dynamic optimization that could be carried out at run-time is more 
complex, as it requires the presence of an overarching orchestrator that re-deploys 
all the required components in the new optimal location, which is something that 
does not exist with the current technology.  

Instead, the FLUIDOS intent-based interface guarantees that each micro-
service is started in the best location and provides also dynamic optimizations 
if required. Hence, DevOps have simplified operations with FLUIDOS, as all 
services leverage a single point of deployment and control, while the FLUIDOS 
“magic” will start the above services in the most appropriate location given the 
service requirements and the infrastructure status. 

 

FIGURE 1. COMPUTING CONTINUUM: DEPLOYING APPS WITH TRADITIONAL APPROACH VS. FLUIDOS. 

1.2 COMMUNICATION TRANSPARENCY 
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The communication between different microservices is different whether they 
belong to the same communication space (e.g., the same Kubernetes cluster) or 
not. For instance, by default, all the communications inside a cluster are allowed, 
while all the communications from external components are forbidden. 
Furthermore, a service that accepts communications from inside the cluster 
requires primitives (e.g., the Kubernetes ClusterIP service) that are different from 
the ones used to accept data from outside the cluster (e.g., the Kubernetes 
NodePort or LoadBalancer services). Therefore, services must be explicitly 
configured to talk to each other based on their respective location, hence further 
complicating the actions required to carry out a possible re-deployment of the 
components mentioned above. It is worth mentioning that some technologies can 
partially overcome this problem, e.g., when communication among micro-services 
occurs through message brokers (e.g., technologies based on publish/subscribe 
primitives, such as Kafka). However, this requires all the micro-services to rely on 
the above communication primitives, which is not always possible because of the 
intrinsic characteristics of the pub/sub technology (e.g., cannot guarantee reduced 
latency), or because applications do not use this technology (e.g., they are based 
on HTTP or gRPC protocols). 

The FLUIDOS approach to the computing continuum is visible in the right part of 
Figure 2: a virtual cluster spanning across multiple real clusters is envisioned, and 
applications are operating on the above virtual space. With FLUIDOS, all 
communications between micro-services are mediated by the FLUIDOS virtual 
network fabric, which guarantees seamless communications independently 
from the location of each microservice. Hence, the communication between two 
services belonging to the same virtual space happens as they were inside the same 
cluster, hence avoiding the necessity of complex and error-prone configurations 
no matter if they are deployed in the same cluster, or in two separate clusters. 

 

FIGURE 2. COMPUTING CONTINUUM: SERVICE-TO-SERVICE COMMUNICATIONS WITH TRADITIONAL APPROACH VS. 
FLUIDOS. 

1.3 RESOURCE AVAILABILITY TRANSPARENCY 

With the current technology, each microservice can use only the resources that are 
inside its own cluster. This statement holds for both normal operations (e.g., when 
the service is started), and when an update (e.g., automatic scaling) is requested. 
This behaviour prevents a service from using available resources located in other 
parts of the continuum, hence possibly ending up in a service disruption even in 
the presence of available resources, but located elsewhere in the continuum. 
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This problem is not very important in cloud datacenters, where it is very unlikely to 
run into a lack of resources. Even in the case of small clusters obtained by 
acquiring only a small subset of the datacenter resources, the problem is irrelevant 
thanks to the capability to (automatically) resize the cluster, e.g., by 
adding/removing worker nodes to the given cluster. Instead, this problem is more 
important when considering a small pool of resources available at the edge, in 
which usually a few servers are available. The capability to acquire new physical 
resources, when needed, can only be achieved by leveraging other worker nodes 
possibly available in the closest vicinity. 

FLUIDOS overcomes the above limitation by enabling the creation of a virtual 
computing space spanning across multiple physical domains, hence enabling 
a service (which has been started in the virtual space) to leverage all the 
resources belonging to the same virtual domain, independently from their 
physical location. Hence, in FLUIDOS a service can seamlessly scale based upon 
the availability of resources within the entire virtual infrastructure, e.g., ending up 
having one instance running in the telco edge, and another in the cloud 
datacenter, hence blurring the current rigid cluster boundaries. 

 

FIGURE 3. COMPUTING CONTINUUM: AVAILABLE RESOURCES WITH TRADITIONAL APPROACH VS. FLUIDOS. 
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2 FLUIDOS ARCHITECTURE 

This section presents the main interactions envisioned in FLUIDOS and the main 
components in the FLUIDOS architecture. 

2.1 INTERACTIONS AMONG FLUIDOS NODES 

FLUIDOS nodes interact with each other according to two dimensions, horizontal 
and vertical, building a virtual continuum that can be completely decentralized, 
without any single point of control. In the following, we present an initial definition 
of the high-level concepts inherent in horizontal and vertical interactions. 

2.1.1 Horizontal interactions 

The horizontal (east-west) interaction enables the creation of a fluid domain 
among peers, which can share their resources and services, or part of them, based 
upon a set of policies (e.g., enable sharing from node X but not from node Y). 
Horizontal interactions are carried out according to a peer-to-peer paradigm, 
hence without the need for any centralized entity that controls and supervises the 
entire process. Applications started on a FLUIDOS node can leverage any 
resource, either local or remote, available in the new virtual space. The FLUIDOS 
orchestrator is responsible for determining the best location for each component 
based on (i) the features requested through the intent-based API (e.g., computing 
power, maximum latency between components and toward end users, resiliency 
properties, number and location of replicas, reduction of energy and costs or 
carbon, etc.) and (ii) the additional policies set for the creation of the virtual space 
and/or the offloading of any component (e.g., no offloading on un-trusted 
domains for critical components). 

The establishment of a peering relationship is a multi-step process, which mainly 
involves the following phases:  

• Discovery, allowing to discover the existence of other peering 
candidates. 

• Negotiation, enabling FLUIDOS nodes to issue requests for resources 
and/or services to other nodes, which in turn advertise their available 
capabilities. 

• Reservation and contract signing, formalizing the acceptance of an 
offer from a FLUIDOS node, and possibly agreeing on compensations. 

• Peering, establishing the virtual fabrics required to enable seamless 
workload offloading to remote nodes (e.g., networking, storage, …). 

• Usage, leveraging the resources and services acquired by other 
FLUIDOS nodes to satisfy service requests. 
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• Depeering, tearing down the previously established computing 
continuum abstractions, which are no longer necessary. 

2.1.2 Vertical interactions 

The vertical (north/south) interaction introduces new concepts such as 
aggregation and hierarchical scaling into the picture. A fluid domain can be 
created by a FLUIDOS “supernode” that aggregates multiple nodes, hence 
exporting a virtual space that is the union of the resources (and services, objects) of 
the composing nodes. The supernode-backed fluid domain is created with the 
same mechanisms already in place for the horizontal interactions; individual nodes 
are still in control of their own resources (ownership principle) and can withdraw 
them (if allowed by the signed contract). In addition, a special “tethered mode”, 
available upon explicit configuration, allows individual nodes to be completely 
controlled by the supernode, giving up their local intelligence (and thus autonomy 
and ownership) in exchange for a simplified control plane. This mechanism, for 
instance, would be used to bring resource-constrained devices, such as micro-
controllers, into the FLUIDOS ecosystem. 

The aggregation paradigm can be applied recursively, with “supernodes” 
becoming part of a bigger “hyper-fluid domain”, managed by an “hypernode” (or 
controlled, if the “tethered mode” is enabled), for a theoretically endless number 
of hierarchical levels. This provides the foundation for the hierarchical scaling 
property of FLUIDOS (recursive hierarchical architecture, from a single device to 
domains of domains). In this respect, the north/south interface, which enables 
interactions with different nodes (either local devices, clusters or other FLUIDOS 
“supernodes”) all featuring the same interface, will be backed by novel resource 
aggregation algorithms that can aggregate the resources of each single node 
(normal, super, etc) in a scalable way.  

Finally, a FLUIDOS Broker is an aggregation, consolidation, and brokering (i.e., 
reselling) point that supports also interactions between multiple administrative 
domains, whose duties include the capability to (1) observe the resources offered 
by many domains and the associated performance when involved in task 
offloading; (2) to monitor (and predict) the quality of network connections; (3) to 
suggest the “best node” when asked for an offloading request. However, given 
that super/hyper nodes include brokering activities albeit limited within the 
boundaries of a single admin domain, FLUIDOS will reuse for the above nodes the 
great part of algorithms (and software) developed for the Broker, assigning to this 
component a major role in the architecture. 

2.2 ARCHITECTURE OVERVIEW  

A FLUIDOS node builds on top of Kubernetes, which takes care of abstracting the 
underlying (physical) resources and capabilities in a uniform way, no matter 
whether dealing with single devices or full-fledged clusters (and the actual 
operating system) while providing at the same time standard interfaces for their 
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consumption. Specifically, it properly extends Kubernetes with new control logic 
responsible for handling the different node-to-node interactions, as well as to 
enable the specification of advanced policies and intents (e.g., to constrain 
application execution), which are currently not understood by the orchestrator. 

Given this precondition, the main architectural components of a FLUIDOS node 
are depicted in Figure 4 and converge around the Node Orchestrator and the 
Available Resources database. The former is in charge of orchestrating service 
requests, either on the local node or on remote nodes of the same fluid domain, 
coordinate all the interactions with local components (e.g., local scheduler) and 
remote nodes (e.g., to set up the computing/network/storage/service fabrics), and 
make sure that the service behaves as expected (e.g., honoring trust and security 
relationships). The latter keeps up-to-date information about resources and 
services available either locally or acquired from remote nodes, following the 
resource negotiation and acquisition process. Additional modules (and their 
companion communication interfaces), are required to handle the discovery of 
other FLUIDOS nodes and carry out the resource negotiation process, to monitor 
the state of the virtual infrastructure and to make sure that offloaded 
workloads/services behave as expected both in terms of security and negotiated 
SLAs, to take care of security and privacy issues (e.g., isolation), and to create the 
virtual continuum within the fluid space. 

 

FIGURE 4. FLUIDOS ARCHITECTURE 

The discovery manager is the module responsible for the discovery of other 
FLUIDOS nodes, producing as output a local database of feasible peering 
candidates. Specifically, each peering candidate is characterized by a globally 
unique identifier, the set of parameters necessary during the peering and resource 
acquisition phase (e.g., target network endpoints, …), as well as a set of 
distinguishing features (e.g., geographical location, whether it is available to sell 
computing resources, specific hardware functionalities or software services), and 
possibly including pricing/billing models. These features are expected to be 
exposed at a high level (e.g., through generic key/value labels); and enable both 
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an initial policy-driven filtering (i.e., excluding undesired nodes from the list of 
peering candidates) and a priori filtering and ranking during the resource 
acquisition phase. 

The node orchestrator is the FLUIDOS module responsible for the orchestration 
of the service requests, either on the local node, or offloading them to a remote 
FLUIDOS node, based on the current snapshot of the available resources 
database. Additionally, it interacts with and coordinates other components, mainly 
the resource acquisition manager, to trigger the acquisition of new resources and 
the setup of the appropriate network and storage fabrics enabling transparent 
execution continuum, in case already available ones are not sufficient to satisfy the 
incoming request. 

The resource acquisition manager is the FLUIDOS module responsible for the 
negotiation process performed to acquire resources and services from remote 
FLUIDOS nodes. It can be triggered either proactively, based on policies, to ensure 
that a given amount of resources (with certain characteristics) is always available to 
fulfil foreseen future requests, or by the node orchestrator, reacting to the lack of 
matching resources to satisfy a service request. 

The virtual fabric manager is the FLUIDOS component in charge of establishing 
the computing continuum abstractions to enable the seamless execution of 
workloads spread across multiple nodes. Specifically, it acts once a resource offer 
is accepted by the resource acquisition manager, and appropriately sets up the 
virtual node abstraction, along with the network and storage fabrics through the 
interaction with the remote node. 

The privacy and security manager is the FLUIDOS module, investigated and 
detailed in section 2.6, which is in charge of guaranteeing the security of the 
different parties involved in the resource continuum, and it is intertwined with all 
the other different processes. This task is additionally fulfilled through the 
interaction with the trust and security agent, a trust anchor part of each FLUIDOS 
node that certifies the correctness of predefined operations. 

The telemetry service is the FLUIDOS component responsible for the monitoring 
of the infrastructure (e.g., actual CPU load, memory, network, as well as possibly 
more detailed indexes such as memory page faults), including the collection of all 
the observability parameters key to enforce and verify the satisfaction of the 
workload requirements expressed through the intent-based API.  

The Cost Manager is the FLUIDOS module responsible for evaluating the burdens 
of carrying out a computational load on a node. Hereby, the burdens can be both 
monetary and non-monetary. 

2.2.1 Relevant Documentation 

Additional details on the FLUIDOS architecture can be found in: 
• Deliverable 2.1, available on the website here. 
• Documentation on GitHub here. 
• REAR protocol for resource Advertisement/Reservation on GitHub here. 

https://www.fluidos.eu/public-deliverables/
https://github.com/fluidos-project/Docs
https://github.com/fluidos-project/REAR
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2.3 FLUIDOS AT THE EDGE 

In many sectors (such as industrial control environment, smart city, smart 
agriculture, etc.), cloud computing has proven unprecedented cost-effectiveness 
and flexibility to users, nevertheless, it fails in all use cases where latency is 
important or where the bandwidth is an issue. For such a reason in the coming 
years, we expect to see more and more applications and services that require 
moving computation from the cloud to the edge. FLUIDOS at the Edge provides a 
way to extend cloud infrastructure by creating a continuum to the edge, managing, 
and deploying applications seamlessly across both cloud and edge environments.  

The heterogeneity of edge devices largely contributes to the complexity of the task 
since the Edge can be broken down into 3 sublayers known as Meta Edge, Deep 
Edge, and Micro Edge. Edge devices belonging to these sublayers can be 
distinguished according to the degree of distribution and decentralization of the 
computation. For instance, the devices at the Micro edge, referred to as IoT edge 
devices, include sensors (e.g., temperature, inclinometer, pressure), MEMS, 
wired/wireless communication, ADC, microphone, or cameras, with a low cost/low 
power microcontroller. Deploying containerized applications on edge devices with 
existing solutions like KubeEdge is a way to build a baseline continuity from the 
cloud to the edge. However, the vanilla version of KubeEdge has many limitations, 
including, the limited support of the well-known IoT protocols such as (LoRA, 
sigfox, Bluetooth, MATTER), with the associated limitations to manage the 
heterogeneity of IoT Edge devices. For this reason, FLUIDOS improves and 
extends several components of the vanilla KubeEdge. 

Modern IoT Edge devices can share raw sensor data or the computed values with 
different applications. Such computed data may include simple raw sensor values 
(e.g., temperature, humidity, …) or the computed outcome of a fusion AI 
algorithm. It is important to point out that, compared to the current solutions, the 
developed FLUIDOS at the Edge will enable the multicasting operations for 
sharing the pre-processed, computed data or raw data between several 
applications with a single data transmission from the Far Edge to the cloud. This 
would result in a significant reduction in power consumption, requiring fewer IoT 
edge devices and reducing the amount of data transmitted towards cloud 
applications. 

Managing data at the edge is a challenging task due to the large number of 
connected devices that capture and send data for analysis and decision-making 
towards the cloud. Although projects like K3s offer complete Kubernetes instances 
for edge devices, several factors contribute to complex data management. These 
factors include the increasing variety of IoT devices, the coexistence of different 
wireless technologies and protocols, as well as the presence of specific operating 
systems and services. Therefore, the FLUIDOS architecture for the Edge introduces 
an innovative solution for implementing the continuum at the edge to deal with the 
above challenges. 

2.3.1 Relevant Documentation 
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Additional details on the FLUIDOS architecture at the edge can be found in: 
• Deliverable 2.1, available on the website here. 
• Installation guide on GitHub here. 
• Prototype implementation on GitHub here. 
• Sample of development kit and reference design of an IoT Edge device based 

on STM32 available on request. 

2.4 THE FLUIDOS NODE 

The objectives of the development of the FLUIDOS node can be summarized in 
the following:  

• Define what is needed to “fluidify” the underlying infrastructure. 

• Define abstractions and models to describe resources and services 
exported by each domain in order to enable a consumer to connect and 
consume the above resources/services. 

• Define two sets of APIs: southbound to ensure metrics collection and 
northbound to facilitate the exposure of those metrics, objects, and 
service abstractions to FLUIDOS “supernodes” (Brokers). 

• Leverage a broker node to increase scalability and support aggregation 
of simple nodes. 

Starting from the outcomes of the development of previous section, the this work 
stream should formulate the design of FLUIDOS Core Services. This includes 
defining the primary functional elements, establishing their interrelationships, and 
outlining the overarching operational logic. The goal is to facilitate modularity and 
enable the "fluidification" of resources within the FLUIDOS system. Subsequently, 
the task will focus on crafting interfaces and associated software components 
necessary for aggregating and coordinating FLUIDOS node resources. 
Southbound APIs will be developed to gather metrics from the underlying layer 
(e.g., CPU, storage, physical objects, software services) and issue appropriate 
commands to the hosting platform (e.g., full virtualization in the host OS). On the 
other hand, Northbound APIs will aggregate these metrics in a hierarchical model, 
making them accessible for consumption by upper nodes. 

Each FLUIDOS domain is mandated to present its own resources and services. 
External entities, including end customers and foreign domains, have the option to 
consume these resources, potentially involving some form of economic exchange. 
The resources and services are designed to be versatile, encompassing various 
objects such as network connectivity, data center resources (e.g., CPU, storage), 
physical objects (e.g., IoT devices), and software services (e.g., data stores, 
databases, analytics, etc.). As a consequence, we will define the abstractions and 
models necessary to describe the resources and services exported by each 
domain, facilitating foreign customers in connecting and utilizing the 
aforementioned resources and services. The chosen programmability models will 

https://www.fluidos.eu/public-deliverables/
https://github.com/fluidos-project/fluidos-edge/tree/main/doc/installation-guide
https://github.com/fluidos-project/fluidos-edge
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provide a unified abstraction of different programmability paradigms, potentially 
through an ontology that is easily extensible to accommodate future requirements 
or custom objects/properties. 

The provided implementation would then enable both mixed broker and peer-to-
peer architectures. A prototype broker (or supernode) will be developed to 
enhance scalability and simplify deployment, especially in the case of constrained 
devices, while potentially reducing overhead and congestion. In a brokerized 
scenario, FLUIDOS nodes delegate resource allocation and policies to the broker, 
enabling aggregation and control on a broader scale. This approach empowers a 
locally decentralized environment, potentially extending to cross-domain 
scenarios, where business decisions can be truly intent-based. 

2.4.1 Relevant Documentation  

Additional details on FLUIDOS can be found in: 
• Documentation on GitHub here. 
• Implementation of the node functionalities on GitHub here. 
• FLUIDOS Ontology on GitHub here. 
• REAR protocol for resource Advertisement/Reservation on GitHub here. 

2.5 THE FLUIDOS CONTINUUM  

The objectives of this work stream can be summarised in the following: 

• Define the decentralised interactions between FLUIDOS instances whether 
in the “horizontal” domain, i.e., direct peering among FLUIDOS instances, or 
in the “vertical” domain enabled by hierarchical stacking of multiple 
FLUIDOS instances. 

• Deploy hyper-distributed applications and services within a virtual 
continuum (computing, storage, network, and services) spanning across 
devices, edge/cloud resources, and FLUIDOS instances. 

• Define and develop APIs/protocols that handle the interaction between 
user/service developers and FLUIDOS as well as between the FLUIDOS 
instances themselves. 

• Design intent-based and policy-based service meta-orchestration and 
provisioning. 

• Enable AI-assisted orchestration and proactive provisioning of edge 
resources, enabled by AI for prediction, traffic forecasting, and, possibly, 
mobility prediction (e.g., for drones and AVs) to optimally allocate and place 
resources. 

• Augment AI-based methods with privacy and security capabilities. 

https://github.com/fluidos-project/Docs
https://github.com/fluidos-project/node
https://github.com/fluidos-project/fluidos-ontology
https://github.com/fluidos-project/REAR
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In detail, this requires first defining the essential components responsible for 
managing the FLUIDOS continuum, along with detailing the compositions and 
interactions of these elements across multiple nodes (e.g., network fabric, storage, 
and service continuum). Additionally, the task will craft protocols to facilitate 
functionalities like node discovery, resource aggregation, and task offloading. As 
part of its scope, techniques for confidentiality-preserving service monitoring and 
service assurance will be designed and developed. The interfaces and interactions 
with the security and privacy components outlined in below will be identified and 
defined. Lastly, exploration and integration with North/South-bound scalability and 
the structure of supernodes (broker) will be undertaken. 

Furthermore, the outcome of this work stream will empower intent-based service 
orchestration by translating desired intents into corresponding policies. This 
translation encompasses converting specific performance goals, expressed in 
terms of predefined Key Performance Indicators (KPIs) related to latency, 
throughput, energy consumption (in collaboration with energy and carbon aware 
workstream), and security (in collaboration with trust, privacy, and security 
workstream), into policies. The subsequent optimization will be conducted through 
deterministic or fuzzy approaches based on machine learning. Policy reasoning for 
consistency checks will be established, with policy-based orchestration relying on 
optimization models that define mathematical programming problems and 
algorithmic solutions. These solutions will consider a set of constraints derived 
from specified policies and requirements inferred from desired intents. Machine 
learning-based approaches and approximation algorithms can be leveraged in 
these solutions. 

In addition, a deep focus will be devoted to AI-based algorithms for resource 
allocation, task scheduling, or anomaly detection, taking into account privacy 
constraints in the orchestration process. To achieve this, existing AI-based 
approaches used for orchestration will be modified to suit the FLUIDOS 
framework, incorporating privacy constraints into algorithm design and training. 
For privacy preservation, techniques such as federated learning, where FLUIDOS 
nodes collaboratively train AI models without exchanging or collecting data, or 
differential privacy techniques, involving the addition of noise to data samples, will 
be employed. 

2.5.1 Relevant Documentation 

Additional details on FLUIDOS can be found in: 
• Documentation on GitHub here. 
• FLUIDOS Ontology on GitHub here. 
• Implementation of the node functionalities on GitHub here. 

2.6 TRUST, SECURITY AND PRIVACY  

The objectives of this workstream can be summarized in the following: 

https://github.com/fluidos-project/Docs
https://github.com/fluidos-project/fluidos-ontology
https://github.com/fluidos-project/node
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• Design and implement zero-trust authenticated access to geographically 
distributed resources. 

• Develop an isolated and trusted environment for the execution of workloads 
over horizontally distributed FLUIDOS instances. 

• Provide monitoring techniques and anomaly detection and mitigation 
mechanisms to protect FLUIDOS nodes. 

• Design algorithms and procedures providing QoS-aware orchestration of 
security functions. 

Specifically, this workstream explores the establishment and monitoring of trust 
between nodes. It aims to deliver a secure and scalable solution for resource 
access control in a highly dynamic and distributed Edge/Cloud scenario, enforcing 
domain-specific access control policies in line with the zero-trust paradigm. It 
defines the components within the FLUIDOS architecture responsible for enforcing 
access control policies, privacy management, and data sharing. These 
components, part of the FLUIDOS Privacy and Security Manager, will include a 
Distributed Authorization Engine, functioning as a lightweight Policy Enforcement 
Point (PEP) to enable authorization within the Attribute-based Access Control 
model (ABAC). 

One of the main objectives is to ensure the secure execution of workloads, 
requests, and response messages across the FLUIDOS ecosystem by maintaining 
confidentiality and integrity. Confidentiality aspects include securing the execution 
of workloads, handling input requests, managing work order responses, and 
overseeing secret key management. Integrity considerations involve safeguarding 
the worker registry, work order queue, and network communication within the 
FLUIDOS ecosystem. These security properties are being achieved by leveraging 
Trusted Execution Environments (TEEs), with consideration for different 
implementations such as AMD-SEV or ARM Trustzone. Additionally, we explore the 
authenticity of code and hardware through remote attestation mechanisms to trust 
the execution of applications within secure enclaves. Attestation of FLUIDOS 
container execution covers secure provisioning of secrets, file system encryption, 
and authentication. Lastly, the secure communication between horizontally 
distributed FLUIDOS instances running in different environments will be evaluated. 

Another aspect of this work package involves identifying and mitigating security 
and privacy threats targeting the FLUIDOS container-based infrastructure. Given 
the limited isolation containers provide, we analyse existing mechanisms like 
SELinux, Apparmor, and Seccomp to enhance the security of the host OS kernel. 
Novel techniques are being proposed to define and enforce dynamic, fine-grained 
security policies to ensure secure execution of containerized applications, 
adhering to the principle of least privileges and the zero-trust paradigm. 
Additionally, the task is exploring privacy leakages within the FLUIDOS container 
environment and propose techniques to quantify and minimise such leakages, 
particularly relevant in the context of confidential computing. 
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At the same time, a malicious user could attempt to disrupt the proper functioning 
of a FLUIDOS node or target other services within the infrastructure. In this context, 
this workstream has been working on AI-based threat and anomaly detection 
solutions. Specific emphasis has been given to balancing the trade-off between 
detection accuracy and monitoring depth, with the goal of achieving precise 
detection while maintaining a high level of effectiveness in mitigation. The usage of 
federated learning to train a model for threat detection across different 
administrative FLUIDOS domains is also being proposed. 

Recognising that methods for threat and intrusion detection can be evaded 
(through adversarial machine learning, for instance), generate a substantial 
number of alarms, and are vulnerable to zero-day attacks, we are putting forth a 
proposal to augment them with a cloud-native approach to cyber-deception. This 
approach relies on orchestration capabilities to offer a resource-aware strategy for 
creating and deploying decoys. 

Finally, this workstream delves into the design of orchestration algorithms for 
activating security services on applications running on FLUIDOS. The goal is to 
ensure adequate protection against cybersecurity threats while considering both 
application-level and infrastructure-level parameters.  

2.6.1 Relevant Documentation 

Additional details on FLUIDOS can be found in: 
• Documentation on GitHub here. 
• Relevant repositories on GitHub here. 

2.7 ENERGY AND CARBON AWARE  

The objectives of this workstream can be summarized in the following: 

• Define an energy- and carbon-aware computation model that can shift 
loads both in time and geography. 

• Devise cost-effective infrastructure optimisations for industrial 
environments. 

• Use Artificial Intelligence and Machine Learning methods for 
performance prediction and enhancement. 

This workstream will create an energy- and carbon-aware computing model within 
the FLUIDOS framework. In addition to presenting its own resources, each 
FLUIDOS domain will communicate the current carbon intensity of its electricity 
(measured in grams of CO2 per kilowatt-hour), which varies across locations due to 
specific electricity mixes and fluctuates hourly at each location. This model goes 
beyond the inherent energy-saving features of FLUIDOS, providing the capability 
to optimize energy consumption and carbon emissions in edge computing. 
FLUIDOS will utilize this model to perform load shifting both in time and 

https://github.com/fluidos-project/Docs
https://github.com/fluidos-project/cyber-deception
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geography, capitalizing on nodes close to energy sources or powered by a 
significant share of renewable energy. The task will design the energy- and carbon-
aware model, outlining its main functional elements and additional technical 
specifications, including functionalities and interfaces. 

In tandem with the focus on energy and carbon efficiency, this task aims to reduce 
infrastructure costs. These savings will arise from the inherent resource and energy 
efficiency of FLUIDOS and additional efficiency measures from the previous task. 
For example, some nodes may employ less powerful CPUs and offload tasks to 
nearby nodes, resulting in overall energy and cost reduction. While there is often 
synergy between OPEX cost savings and energy/carbon savings, depending on 
electricity prices, conflicts may arise. To address these potentially conflicting goals, 
the energy- and carbon-aware computing model of FLUIDOS will enable setting 
fine-granular priorities and reflecting desired trade-offs between the two when 
relevant.  

Furthermore, the work package will delve into the training of artificial intelligence 
and machine learning models for two purposes. Firstly, to learn from past loads 
and predict the energy demand of future edge computing tasks. Secondly, to 
compare and learn from strategies used by other nodes for achieving better 
individual and overall energy efficiency. The outcomes of the energy demand 
prediction task will contribute to the model from the previously described tasks, 
which communicate the energy, carbon, and costs of edge computing tasks with 
the aim of overall minimization. 

2.7.1 Relevant Documentation 

Additional details on FLUIDOS can be found in: 
• Documentation on GitHub here. 
• Relevant repositories on GitHub here and here. 

https://github.com/fluidos-project/Docs
https://github.com/fluidos-project/fluidos-energy-assessment
https://github.com/fluidos-project/fluidos-energy-predictor
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3 EARLY ADOPTERS 

What follows here is a general description of the early adopter of the FLUIDOS 
project. 

3.1 TERRAVIEW 

3.1.1 Use Case Description 

TerraviewOS, is a unified platform for viticulture, enables the grower to manage 
information from many sources, returning high-value info such as yield estimation, 
smart irrigation, and disease prediction and diagnosis. Since TerraviewOS is cloud-
based, a key problem is the interaction with on-field devices in the presence of 
poor network connectivity. Operations such as drone aerial surveys (approximately 
30-40GB of data for a modest area of 10 hectares) may return their valuable results 
with large delays, resulting in potentially poor user experience or indeed non-
operation for customers. 

3.1.2 Use Case Problem 

In the following diagram, the use case’s scenario is described. The scenario shows 
a conceptual representation of a distributed computing architecture, "edge" 
architecture. In this scenario there are 3 nodes, each providing the TerraviewOS 
service to an individual and different customer. These nodes are computing units 
that a customer can either purchase or lease from Terraview. These nodes are 
connected over different networking technologies depending on what is available 
at the customer site. They are connected to the central TerraviewOS service. At the 
local node specific functionality of TerraviewOS is executed and other functionality 
is provided by the core TerraviewOS service shown as the top box in the diagram. 

 

Each FLUIDOS node is represented by one customer, a customer having one or 
more vineyards to manage. Each customer is isolated yet connected to shared 
computational resources that are provided by Terraview. The goal of this scenario 
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will be to deliver an edge architecture that integrates the central service delivered 
by the technology of FLUIDOS and solves the following problems. 

• No simple and integrated network fabric over cloud continuum. 

FLUIDOS will provide an integrated Network Fabric over Cloud Continuum. 
The current landscape lacks a unified network fabric across the cloud 
continuum, leading to connectivity and interoperability challenges. The 
smart viticulture use case involves using the FLUIDOS unified networking 
framework to streamline data transfer and resource management across 
various cloud services, from private to public clouds and edge computing. 
This shows the simplification of multi-cloud management and ensures 
reliable network behaviours. 

• No easy way to define and manage a cloud continuum application. 

Today, there is no straightforward method for managing applications in 
cloud continuum environments, complicating resource utilisation and 
application lifecycle management. The smart viticulture use case will take 
advantage of the FLUIDOS technology for easy application definition, 
deployment, orchestration and management across different cloud models. 
It will include intuitive interfaces, standard templates, automated 
deployment tools, and robust monitoring for optimal application 
performance in distributed cloud environments. 

• Deficit of security, privacy or trust. 

Significant concerns around security, privacy, and trust hamper cloud 
computing's effectiveness. The mart viticulture use case will focus on 
integrating advanced security frameworks (TEE/TPM, anomaly detection etc) 
for robust encryption, secure data handling, and strict access controls. It will 
also incorporate privacy-preserving technologies and comply with 
international data protection laws to enhance user trust and ensure data 
integrity in the cloud. 

3.1.3 Current Approach 

The current approach faces many limitations: 

• Everything is centralised. 

The current centralised system architecture concentrates all services and 
processing in one location, leading to potential system failures and latency 
issues. A revised technical use case would explore decentralised 
architectures to distribute processing across multiple nodes. This would 
improve system resilience, reduce latency, and offer a scalable solution for 
geographically dispersed users. 

• All data resides with the service provider.  
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With all data stored by the service provider, concerns arise about privacy 
and security. The technical use case should develop a distributed data 
storage solution, possibly using blockchain or decentralised databases, to 
enhance data security and give users more control. Ensuring data 
encryption, access control, and compliance with data protection laws are 
key aspects of this approach. 

• No reliability on the customer side - network dead, no service. 

Dependence on continuous network connectivity leads to service 
disruptions during network outages. A technical use case should focus on 
offline capabilities or local caching to maintain basic functionalities during 
disconnections. Systems designed to operate offline and sync with central 
servers once online would ensure uninterrupted service. 

• Huge data ingress over limited network connection. 

Significant data ingress through limited network connections causes 
congestion and inefficiency. The technical use case would look into 
optimising data transfer using data compression, selective transmission, or 
edge computing to process data closer to its source. This approach aims to 
minimise data transfer volume, ease network congestion, and enhance 
system performance. 

3.1.4 The FLUIDOS Approach 

The architecture of TerraviewOS is designed with a focus on efficient and secure 
operation across multiple customer on-premise sites leveraging the support 
services operated upon centralised cloud infrastructure. At the core of this 
architecture lies the concept of the FLUIDOS domain, which encompasses both 
customer sites and centralised services. 

In this use case, each customer site will host a FLUIDOS node, responsible for 
running the majority of TerraviewOS services along with the user interface. These 
nodes are designed to ensure security, with data encrypted both at rest and in 
transit, and will provide access to necessary centralised services. The backend 
services of TerraviewOS will run in the cloud, with a crucial design choice being the 
avoidance of one backend instance per FLUIDOS node. This approach aims to 
facilitate the secure sharing of workloads and data across FLUIDOS nodes that 
reside in the cloud. 

The FLUIDOS nodes will be designed to ensure that different nodes cannot 
interfere with each other, maintaining a high level of operational integrity and 
security. This is further enhanced by the requirement for workloads to run on 
Trusted Execution Environments (TEEs), which can be specified in the application 
descriptors through intents. 

Centralised cloud services of TerraviewOS, operating on a FLUIDOS node, will be 
multi-tenant, ensuring a clear separation between different customers. This 
separation is pivotal in maintaining data integrity and privacy for each customer. 
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The key objective of this architecture is to minimise any duplication of service 
functionality, as such redundancy could lead to inefficiencies, technical debt, and 
unnecessary costs. 

All deployments for customer sites will be managed centrally, streamlining the 
operational process and ensuring consistency across the FLUIDOS domain. This 
centralised management approach allows for better control and oversight of the 
services provided, ensuring that each customer site operates effectively and 
securely within the overarching TerraviewOS ecosystem. 

Therefore, the expected advantages can be summarized in the following: 

• Business continuity: adapt to network changes, operate without uplink, 
and replicate for failover. 

This technical use case focuses on maintaining business continuity through 
network adaptability, offline operation, and failover replication. The system 
should adjust to network fluctuations, ensuring functionality without a 
primary network connection, and use alternative communication methods 
when needed. Critical operations and data must be replicated across 
different nodes to enable seamless service continuation in the event of a 
node failure, thereby reducing downtime and data loss. 

• Security: raw data stays local, isolation and trusted execution on 
network. 

Prioritising security, this use case emphasises keeping raw data local and 
isolated within the network for enhanced protection. The system is designed 
to store and process data locally, minimising external data exposure. 
Implementing network isolation techniques like VPNs and secure 
environments for data processing, the system ensures data integrity and 
confidentiality, protecting against unauthorised access and breaches. 

• Decentralisation: local access, no central cloud, reduced network 
traffic, workloads at edge and core. 

The focus here is on decentralising system architecture to facilitate local 
access and minimise network traffic. By distributing workloads between 
edge and core, the system reduces data transmission distances, lowers 
latency, and optimises network usage. Local processing at the edge 
enhances real-time decision-making and lightens the load on central 
servers. The design aims for efficient resource management across 
distributed nodes, improving performance and scalability. 

3.2 RSE 

3.2.1 Use Case Description 
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The introduction of a massive number of renewable energy sources such as solar 
panels require a highly monitored distribution grid that can coordinate energy 
producers and consumers in real-time. This relies on a large number of automatic 
measuring devices such as PMUs (Phasor Measurement Units), with real-time data 
collection and synchronization carried out by PDCs (Phasor Data Concentrators). 
These devices, already in use on the high voltage grid, provide the data used to 
compute the grid state estimate for monitoring and control applications. 

3.2.2 Use Case Problem 

The introduction of PMUs into the distribution network brings about various 
challenges, including: 

• Scalability  

The number of PMUs required for the power grid to be observable is 
significantly higher for the distribution case. While hundreds of PMUs are 
needed for the Italian transmission network to be observable, the 
distribution network requires a number of the order of thousands. This 
implies the need to manage a massive amount of distributed devices 
and their corresponding data flows. 

• Resiliency  

With thousands of devices in play, enhancing the resilience of the ICT 
infrastructure for data collection is crucial. For instance, managing faults 
or planned maintenance should be automated, as well as the possibility 
for the above devices when disconnected from the Internet and/or 
unable to access companion services running in the cloud. 

• Latency  

This particular application has strict data latency requirements (of the 
order of milliseconds) to enable real-time control of the power grid. 

• Cybersecurity  

The power grid is a critical infrastructure for the country and, as such, 
must be protected from any malicious attack, including the ones 
targeting monitoring and control services. 

3.2.3 Current Approach 

While the Italian transmission grid is centrally managed by a single PDC, the 
introduction of PMUs in the distribution grid is still at an experimental level. 
Nevertheless, the massive amount of PMUs and PDCs in the future network makes 
this centralized approach (a) hardly scalable, (b) not resilient to network failures or 
forced disconnections (e.g., to preserve a portion of the network from an ongoing 
attack). 

3.2.4 The FLUIDOS Approach 
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Traditionally, PDCs were monolithic applications running on dedicated hardware; 
however, with the increasing computational power available at lower costs, this is 
changing in recent years. Experimental efforts are underway to virtualize 
applications and utilize Kubernetes for orchestrating the deployment of PDCs and 
real-time analysis applications at the edge. This is aimed at reducing latency issues 
and improving resiliency, avoiding the need of operator physical assistance in case 
of outages, and paves the way for their usage within a FLUIDOS-based 
environment. 

In fact, FLUIDOS creates a continuum of resources from the edge to the cloud and 
enables the displacement of workloads, such as data collection and analysis 
processes, based on specific scenarios (faults, reconfiguration, maintenance). The 
main features of the approach enabled by FLUIDOS are: 

• Computing Continuum 

FLUIDOS would enable PDCs and analysis applications to continue 
functioning even if communication with control centers is interrupted by 
migrating PDC services to an adjacent node in case of fault. 

• Intent-Based Orchestration 

FLUIDOS can automatically orchestrate PDCs based on the latency 
between the node and PMUs, thereby improving the power grid state 
estimate or responding to faults. 

• Cybersecurity 

FLUIDOS ensures service isolation from other applications on the hosting 
node with different usage permissions. It also leverages logging and 
anomaly detection capabilities and provides survival capabilities in case 
a portion of the grid is disconnected from the main network, hence 
preserving its operations in case of a cyber-attack. 

3.3 ROBOTNIK 

3.3.1 Use Case Description 

Mobile robots for Industry 4.0, smart logistics, and retail are resource-constrained 
and battery-powered mobile robots that operate in shared spaces with humans 
and other IoT devices, such as elevators, automatic doors, and other mobile 
robots. For autonomous operation, mobile robots are equipped with sensors and 
high-performance computational algorithms that (1) need considerable computing 
power and (2) need to be executed at the highest speed. 

3.3.2 Use Case Problem 

This kind of robotics, by definition, uses battery-powered devices, unlike stationary 
robot arms. This adds constraints to an already complicated application. In 
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robotics logistics, idle robots are not productive. And intrinsically, robots need to 
charge their batteries to continue working. During this time, the robot is not 
available to move things around. 

The robot's software is complex and requires heavy computation, so it is 
mandatory to equip the robot with powerful enough computing engines that, 
however, should limit the consumed power. Onboarding an ultra-low-resource 
device will lead to a robot that is not capable of processing the required tasks, and 
onboarding an ultra-high-resource device will deplete the battery very quickly. 

There is an additional relationship between the computer load and the battery 
drain. Heavy computational tasks drain the battery faster. 

3.3.3 Current Approach 

To solve the above computing problem with the current technology, we can follow 
either one of the following two approaches: (a) centralized processing, (b) 
individual computing. 

• Centralized processing 

The robot fleet operates under a centralized communication architecture, 
whereby the intelligence (i.e., processing resources and software) is placed 
in a central component, such as the fleet manager (or orchestration system). 
All communication between the individual robots and the fleet manager is 
routed through an intermediary edge or cloud device. In this setup, the 
central device acts as a hub that (a) implements processing algorithms, and 
(b) facilitates and controls the communication flow within the network. 

This centralized approach may introduce a single point of failure and 
potential latency issues as all communications must pass through the central 
hub, and it is not appropriate when robots may experience connectivity 
issues (e.g., poorly connected area in a factory).  

• Individual computation 

In this approach, robots typically compute everything on the device itself. 
This practice, however, may lead at least to three main problems. First, 
computational inefficiency, as it may result in scenarios where some robots 
remain idle and underused, while others are overwhelmed with 
computational tasks, nearing the point of overloading their onboard 
computers. Second, over-dimension of the available computing resources 
(or, alternatively, the necessity to deploy simplest computing algorithms), 
given that the necessary hardware resources to comply with peak 
computing demands must be available on the robot itself; alternatively, to 
save on the cost of the above hardware, simplest (and less resource-hungry 
algorithms, but also less efficient) should be used. Third, excessive battery 
usage, as all the processing happens on the robot itself, substantially 
draining the battery power, which is particularly important on small robots 
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(with a small-size battery, while computing power for robot navigation and 
other algorithms is an invariant with respect to the size of the robot. 

3.3.4 The FLUIDOS Approach 

The FLUIDOS continuum has the capability to transparently use computing 
resources nearby, increasing the overall system's productivity by intelligently and 
dynamically externalizing the robotics workload to other devices (e.g., a server at 
the factory premises) and/or using the robot's idle time (i.e., when the robot is 
docked in the battery charging station) to increase the entire system's 
computational capabilities. Each robot can leverage this approach when it is well-
connected to the network, while it can rely on its sole onboard computing 
capabilities (which are turned on only upon necessity) when moving in a poorly 
connected area. 

This approach will lead to a significant decrease in battery usage and an increase 
in the robot's computational capabilities beyond its onboard limits, with the 
capability to dynamically adapt its computing behavior (i.e., onboard or offloaded) 
based on the actual operating conditions. 

With FLUIDOS, we can apply the cloud continuum computing approach by 
considering each robot as an edge device and intelligently and dynamically 
outsourcing robotics workloads to other robots or devices depending on the 
environment. This can be achieved without interfering with the robotics task, so 
robot developers will be able to run their applications without changing their way 
of working. 

Instead of using monolithic bare-metal workloads, the robots will use cloud-native 
technologies like containerization and Kubernetes to split and dynamically place 
the workloads in different devices. All robots will be treated as edge devices that 
can accept or externalize workloads, instead of being isolated devices. 

Given the potential capability of the FLUIDOS intent-based orchestrator to pursue 
different objectives, workload distribution among the different available systems 
can be optimized to achieve diverse goals such as: 

• Maximize the battery life of the robots. 

• Minimize the time it takes for the robots to complete their tasks. 

• Ensure that all of the robots are evenly utilized. 

• Avoid overloading any individual robot. 

Highly dynamic decisions can be envisioned as well. For example, if a robot is low 
on battery, FLUIDOS might move its workloads to other robots with more battery 
power. Or, if a robot is overloaded, FLUIDOS might move some of its workloads to 
other robots that are less busy. 

In a nutshell, the FLUIDOS approach to robot workload orchestration enables to 
improve the performance, efficiency, and reliability of your entire system. 
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4 OPEN CALLS: RESEARCH CHALLENGES AND USE 
CASES 

The upcoming FLUIDOS Open Calls, scheduled for launch in December 2023, are 
aimed at European high-tech SMEs, researchers, and innovators. FLUIDOS Open 
Calls present a unique opportunity for participants to explore the project´s novel 
mechanisms for data sharing and processing in the computing continuum. 

The FLUIDOS Open Calls aim to achieve the following objectives: 

• Facilitate Technological Advancements: Encouraging applicants to offer 
additional Open-Source functionalities to be integrated with FLUIDOS, 
fostering continuous innovation and expansion of the platform's 
capabilities. 

• Validate FLUIDOS Architecture: Through the FLUIDOS Use Case call, 
applicants will be invited to test and validate FLUIDOS architecture and 
software by integrating their own additional software on top of the 
FLUIDOS system, exploring new sectors beyond environmental 
monitoring, mobility, healthcare, and security. 

• Promote Environmental Sustainability: Encouraging participants to 
leverage FLUIDOS' minimised energy consumption for data processing 
to create business models that are more environmentally sustainable. 
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5 PUBLIC DOCUMENTATION AND QUICK START 

Add here anything that might be relevant for an Open Call partner to learn more 
about the project. 


