
 

 

 

 Grant Agreement No.: 101070473 

Call: HORIZON-CL4-2021-DATA-01  

Topic: HORIZON-CL4-2021-DATA-01-05  

Type of action: HORIZON-RIA  

 

 

D5.1 SEAMLESS, ZERO-TRUST SECURITY AND 

PRIVACY 
 

Revision: v.1.0 

 

Work package WP 5 

Task All 

Due date 30/11/2023 

Submission date 30/11/2023 

Deliverable lead CYSEC 

Version 1.0 

Authors 

Emna Amri (CYSEC), Eduard Marin (TID), Domenico Siracusa (FBK), Matteo 
Franzil (FBK), Marco Zambianco (FBK), Daniele Santoro (FBK), Eduardo 
Cánovas (UMU), Jose Manuel Bernabe Murcia (UMU), Elisa Albanese (RSE), 
Francesco Pizzato (Polito), Guillem Garí (ROB), Andy Edmonds (TerraviewOS), 
George Kornaros (HMU)  

Reviewers Guillem Garí (ROB), Nasir Asadov (TUB) 



 

FLUIDOS | D5.1: Seamless, zero-trust security and privacy (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 2 of 125 

 

 

Abstract 

This document provides an overview of the security services and features that 
are being implemented within the FLUIDOS stack in order to enforce a 
seamless, zero-trust security and privacy during all the phases of creation and 
utilisation of the fluid continuum.  
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EXECUTIVE SUMMARY 

The deliverable D5.1 provides an overview of the security services and features that are 
proposed for the FLUIDOS stack in order to enforce a seamless, zero-trust security and 
privacy during all the phases of creation and utilization of the fluid continuum.  

Part of the security considerations about the FLUIDOS stack is based on the  requirements 
extracted from the considered use cases (Intelligent Power Grids, Smart Viticulture, and 
Robotic logistics). Each of these scenarios emphasizes the need for robust security measures 
tailored to their unique operational contexts. 

Alongside use case requirements, a first-level threat analysis for the FLUIDOS architecture is 
also included, setting the foundation for understanding the potential vulnerabilities within 
the stack. This groundwork also maps out the security challenges of FLUIDOS across its 
various interactions.  

These challenges are tackled, first, with the implementation of secure discovery and 
resources acquisition, facilitated by decentralized authentication. Subsequently, tools 
dedicated to the secure utilization of the FLUIDOS continuum are detailed. Topics covered 
encompass system integrity, confidential computing, and container isolation. Additionally, 
measures and strategies for threat and intrusion detection, in conjunction with cyber 
deception techniques, are discussed.  

The final section documents scholarly dissemination activities, encompassing conference 
participations and a collection of papers and proceedings highlighting the security facets of 
FLUIDOS. 
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1 INTRODUCTION 

The evolution of computing has introduced transformative paradigms, with cloud computing 

at the forefront. This shift revolutionized the conventional model of single-application 

servers, introducing dynamic resource allocation, cost savings, and enhanced service agility. 

However, the rapid proliferation of sensors and IoT devices, coupled with the persistent 

reliance on centralized cloud computing, has created a pressing need for a more resilient 

and secure infrastructure. 

The FLUIDOS project, short for "Flexible, scalable, secure, and decentralized Operating 

System," has been introduced  as a response to this challenge.  Besides offering a borderless, 

decentralized continuum that integrates the edge with the cloud, FLUIDOS acknowledges 

the crucial importance of security in this evolving landscape. As computing extends to the 

edges of networks, where data is generated and actions take place, the potential for 

vulnerabilities and threats escalates significantly. In this context, FLUIDOS features a 

comprehensive security initiative that aims at safeguarding the integrity and confidentiality 

of data and services across the continuum – from the cloud to the edge. 

FLUIDOS's mission extends beyond technological innovation; it seeks to redefine the 

paradigm of edge computing by placing security at the core of its design. 

In this document, we dive into the landscape of security challenges that FLUIDOS addresses, 

and the comprehensive array of measures, services, and tools implemented to ensure the 

highest levels of security across this distributed ecosystem. 

1.1   THE FLUIDOS ARCHITECTURE 

The FLUIDOS detailed architecture was described in D2.1 “D2.1 Scenarios, Requirements 

and Reference Architecture – v.1”. Here we provide a reminder of the main concepts required 

for a better understanding of this document.  

1.1.1 The FLUIDOS Software Stack 

The FLUIDOS software stack is composed of four main layers, as depicted in Figure 1.1. 

 

FIGURE 1.1: THE FLUIDOS STACK 
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● Vanilla operating systems: which abstract the underlying hardware capabilities. There 

are strong technical and cultural reasons for having multiple operating systems on 

real devices, although many of them are Linux-based: necessity to support a given set 

of features (e.g., real-time processing), widespread adoption within a given 

community (e.g., Container OS), hardware requirements (e.g., low-cost devices), user 

constraints (e.g., usability in consumer-oriented electronics or smartphones). 

● Kubernetes [1]: which introduces a uniform layer on top of different infrastructures, 

regardless of whether they are end-user devices or larger cloud/edge data centers. 

Accounting for heterogeneous characteristics, Kubernetes distributions are available 

in different flavours: full-fledged Kubernetes (i.e., K8s) for small/large DCs, other 

distributions (e.g., Microk8s, K3s, KubeEdge) that target individual devices or small 

swarms of devices at the edge of the network. Kubernetes provides the minimum 

common denominator for FLUIDOS to build its services upon, leveraging its user-

oriented primitives (e.g., replicas, deployments, stateful sets, services, etc.) that 

enable the deployment of user applications independently of the current distribution 

(e.g., K8s vs K3s), the size of the DC/node, and other characteristics (e.g., CPU 

architecture, i.e., Intel vs. ARM). 

● Liqo [2]: which brings in a multi-cluster abstraction on top of Kubernetes, enabling 

seamless offloading of workloads from one cluster to another. At the same time, it 

handles all the additional aspects required to make this process transparent from 

both the users and the applications point of view, including resource negotiation, 

cross-cluster network fabric setup, and synchronization of the appropriate artifacts. 

Overall, Liqo provides the foundation to enable the “resource virtualization” layer, 

exposing at the same time appropriate extension hooks to further enrich it with 

domain specific capabilities.  

● FLUIDOS: which implements the full Meta Operating System capabilities. It builds on 

top, and it leverages the extension hooks made available by the underlying layers to 

enable the most advanced and domain specific capabilities. 

The overall software stack shall acknowledge and support the possible usage of additional 

middleware frameworks widely adopted in certain communities, such as ROS and MQTT. 

1.1.2 The FLUIDOS Node Architecture 

A FLUIDOS node builds on top of Kubernetes, which takes care of abstracting the underlying 

(physical) resources and capabilities in a uniform way, no matter whether dealing with single 

devices or full-fledged clusters (and the actual operating system) while providing at the same 

time standard interfaces for their consumption. Specifically, it properly extends Kubernetes 

with new control logic responsible for handling the different node to node interactions, as 

well as to enable the specification of advanced policies and intents (e.g., to constrain 

application execution), which are currently not understood by the orchestrator. 



 

FLUIDOS | D5.1: Seamless, zero-trust security and privacy (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 16 of 125 

 

 

FIGURE 1.2: THE FLUIDOS MAIN ARCHITECTURE 

Given this precondition, the main architectural components of a FLUIDOS node are depicted 

in Figure 1.2, and mainly consist of: 

● Discovery manager, responsible for the discovery of other FLUIDOS nodes, 

producing as output a local database of feasible peering candidates (see  Figure A 

Appendix A for a description of the Discovery Workflow).  

● Node orchestrator, responsible for the orchestration of the service requests, either on 

the local node, or offloading them to a remote FLUIDOS node. Figure B of Annex A 

describes the FLUIDOS service request process. 

● Resource acquisition manager, responsible for the negotiation process performed to 

acquire resources and services from remote FLUIDOS nodes. It can be triggered 

either proactively, based on policies, to ensure that a given amount of resources is 

always available to fulfil foreseen future requests, or by the node orchestrator, 

reacting to the lack of matching resources to satisfy a service request. Figure C of 

Annex A describes the FLUIDOS resource acquisition process. 

● Virtual network fabric, responsible for establishing the computing continuum 

abstractions to enable the seamless execution of workloads spread across multiple 

nodes. 

● Privacy and security manager, in charge of guaranteeing the security of the different 

parties involved in the resource continuum 

● Telemetry service, responsible for the monitoring of the infrastructure, including the 

collection of all the observability parameters key to enforce and verify the satisfaction 

of the workload requirements expressed through the intent-based API. 

● Cost manager, responsible for evaluating the burdens of carrying out a 

computational load on a node. 
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In addition, for what concerns the interaction between different nodes, we designed the 

REAR (REsource Advertisement and Reservation) protocol, which enables different actors 

such as cloud providers and customers to advertise, reserve (and then consume) resources 

(e.g., virtual machines and their characteristics in terms of CPU, RAM; a Kubernetes cluster, 

etc.), and services (e.g., a database as a service). 

The design of the FLUIDOS node was mainly based on the functional requirements provided 

by the different use-cases.  

In the following we give an overview of the use cases scenarios with a focus on their security 

requirements that will drive the security architecture described in this document. 

1.2   USE CASES SCENARIOS AND SECURITY REQUIREMENTS 

In this section, we provide a high-level overview of the three use-cases associated with 

FLUIDOS, for the sake of context for the security requirements. For a more in-depth 

exploration, please refer to Deliverable D2.1. 

1.2.1 UC1 Intelligent Power Grid – Energy - RSE 

Power distribution grids are evolving into more complex structures, integrating distributed 

generation, dual load-generator entities (so-called prosumers), energy storage, and new 

equipment and services. Digital technologies, sensors and software are used to better match 

the supply and demand of electricity. 

Due to the increasing dynamics and uncertainty changing behaviour of the actors in 

distribution grids, real-time collection of data has a critical role in guaranteeing energy 

delivery to end-users. To monitor, control and protect distribution grids, the use of synchro-

phasors from Phasor Measurement Units (PMUs), traditionally employed in the transmission 

grid, is promising. However, the use of PMUs presents challenges related to resilience, 

scalability, availability, security and cost of the measurement infrastructure, which includes 

the devices and their communication systems. PMU are devices strategically placed in the 

power grid to measure electrical quantities and transmit this data to Phasor Data 

Concentrators (PDCs), with PMUs sending multiple measurements at high sampling 

frequencies. PDCs collect, aggregate, and synchronize this data and can be located in 

substations and control centers, forming a hierarchical architecture. The actors involved are 

the following: ICT operator, responsible for the maintenance and management of the ICT 

infrastructure, grid maintenance operator, responsible for the maintenance of the power grid 

in case of failures, grid administrator, responsible for technical and economic optimizations.  

The expected scenario will be to expand the PMUs and PDCs infrastructure to the distribution 

grid. To support this transition, the infrastructure needs to scale and handle a large number 
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of PMUs and PDCs, processing the data complying with QoS and latency requirements. 

Furthermore, in case of ICT maintenance, outage and grid reconfiguration, the infrastructure 

should be highly resilient, orchestrating PDCs, even on different hardware and allowing for 

a seamless phasor data concentration and grid state computation. Orchestration should 

reduce the required redundant hardware and therefore associated costs, and allow local 

edge processing in case of communication breakdowns.   

The security requirements for this UC are based on  security guidelines for Intelligent Power 

Grids [3] [4]. 

1.2.2 UC2 Smart Viticulture - TER 

TerraviewOS, is a unified platform for viticulture, enables the grower to manage information 

from many sources, returning high-value info such as yield estimation, smart irrigation, and 

disease prediction and diagnosis. Since TerraviewOS is cloud-based, a key problem is the 

interaction with on-field devices in the presence of poor network connectivity. Operations 

such as drone aerial surveys (approximately 30-40 GB of data for a modest area of 10 

hectares) may return their valuable results with large delays, resulting in potentially poor user 

experience or indeed non-operation for customers. 

Through this use case, a solution for Terraview will be to create edge/device-tailored 

distributions of its OS to enable edge computation delivered by FLUIDOS. Due to the 

complexities, Terraview needs an underlying system that relieves their software from 

managing heterogeneous devices and cloud-native workloads. It is this system that will be 

enabled by FLUIDOS. The prototype hardware that the solution will be deployed to is 

specifically targeted for agricultural use. The specifications of the hardware can be viewed 

online and have only support for generalized processing workloads. We will not need the 

use of GPUs, however there are TEE capabilities onboard, those will be leveraged to secure 

workloads executing upon the edge hardware. 

1.2.3 UC3 Robotic logistics - Robotnik 

The robotics logistics use case involves mobile robots in industry 4.0, smart logistics, and 

retail scenarios, where these mobile robotic platforms can be seen as self-organized mobile 

battery-powered systems with resource constraints in terms of computation. The productivity 

of this use case depends on the ability of the mobile robots to perform complex tasks in a 

short time, the optimization of the duration of their battery life, their effective coordination 

with the fleet, and the time-consuming deployment operations.  

The main reason to introduce FLUIDOS in this scenario is to manage fleet computational 

capacity, aiming to increase efficiency, execute heavy workloads without draining robot 

batteries and reduce deployment and hardware costs. Externalising and moving dynamically 

workloads between the different computational resources (to other robots, to the edge, or 



 

FLUIDOS | D5.1: Seamless, zero-trust security and privacy (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 19 of 125 

 

to the cloud) based on some predefined rules, will increase the productivity of the whole 

system and will offer a completely new approach to the market of the autonomous mobile 

robots in logistics.  

The security aspects in this use-case are mainly related to the generated data:  

- The robots produce data such as video streams that could be regulated by GDPR  and 

outsource it to external devices. This data must be only accessible by the customer. 

- With the increase of confidential robotic information traveling around the network with 

FLUIDOS, we need to ensure that data flow is encrypted and only readable by the 

workload that will consume the data.  

1.2.4 Security Requirements 

The table below summarizes the security requirements provided by the three use-cases 

described above. 

TABLE 1.1: SECURITY REQUIREMENTS OF FLUIDOS USE-CASES  

Req ID Req Description Criticality  

REQ-RSE-01 Authentication and RBAC authorization: in the FLUIDOS 

environment role-based authentication and authorization 

should be guaranteed among FLUIDOS nodes. 

high 

REQ-RSE-02 Pod Security Standards and Pod Security Admission Labels: 
Pod Security Standard and Pod Security Admission Labels 
should be respected when shifting workloads to another 
FLUIDOS node in order to avoid privilege escalation. 

high 

REQ-RSE-03 

REQ-TER-02 

Workload Isolation: pods should be completely isolated 
from other tenants of the system, which share common 
resources and the hosting FLUIDOS node so that workloads 
are secure and cannot be tampered with; isolation is 
required also in the case of non-different administrative 
domains because FLUIDOS nodes can host multiple 
applications with different levels of criticality for the power 
grid management. 

high 

REQ-RSE-04 

REQ-TER-02 

REQ-ROB-02 

Encrypted communication: communication between 
FLUIDOS nodes should be encrypted so that confidentiality 
is preserved.  

high 

REQ-RSE-05 Network policies: pods should maintain network policies 
when shifted to another FLUIDOS node so that the integrity 
and confidentiality of communications are maintained. 

high 
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REQ-RSE-06 Security Alert: FLUIDOS should send alerts in case of critical 
events in order to have a situational-aware system. 

high 

REQ-RSE-07 

REQ-TER-05 

Monitoring: monitoring dashboards and logs should be 
accessible so that real-time monitoring and post-incident 
analysis can be done in the FLUIDOS environment. 

high 

REQ-RSE-08 Defensive measures against cyber-attacks: defensive 
measures are needed against cyber-attacks to improve 
detection, mitigation and resilience in the FLUIDOS 
environment. 

high 

REQ-TER-01 TEE-Enabled Processing: Crates should be capable of 
executing all processes supported by the use of a TEE 
through FLUIDOS stack. 

high 

REQ-TER-04 Integration: An AAA provider that supports TerraviewOS 
must be used in order to aid integration with the existing 
system. 

high 

REQ-ROB-01 Data Confidentiality and Privacy: Confidential and private 
data should be guaranteed to be only accessible by the 
designated consumer. 

high 

 

1.3 THREATS ANALYSIS AND SECURITY RISK ASSESSMENT 

To identify the key vulnerabilities and security challenges inherent in the FLUIDOS 

architecture, we initiated a high-level threat analysis. This modeling process will be iterative 

and will be continually updated to accommodate emerging insights and evolving threat 

landscapes. 

To maintain consistency with the key FLUIDOS resources, schemas and workflows described 

in the D2.1 deliverable, we have identified three key areas in which we performed the threat 

analysis study: the discovery phase, the resource acquisition phase and the service request 

phase. 

1.3.1 Methodology 

First, for each of these areas we draw a data flow diagram that summarizes the main 

components that are involved in that phase. Each diagram incorporates information from 

current status and workflow diagrams included in D2.1. We do not focus on the sequence of 

actions performed by each component, as that information is already conveyed by each 

workflow diagram in the deliverable. Instead, we identify trust boundaries between 
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components, as a means of displaying the extent of each entity’s trust zone. Thus, with a 

dashed line we group together components that should be able to interact with each other, 

safe from possible outside attackers.  

Given FLUIDOS's inherently distributed architecture, the ideal approach might have been to 

establish strict boundaries between its components. However, such a strategy would have 

introduced complexity in visual representations and hindered analytical efforts. As a result, 

we have chosen a more conservative approach, which involves grouping the majority of 

FLUIDOS node components. Each trust zone is depicted by rounded rectangles, external 

entities by standard rectangles, data stores by cylinders, and data flow is represented 

through arrows. This approach strikes a balance between clarity in diagrammatic 

representation and practicality for analytical purposes. 

In each diagram, we apply the STRIDE framework to assess the various threats that could be 

concerned with that particular phase. STRIDE is an acronym for Spoofing, Tampering, 

Repudiation, Information Disclosure, Denial of Service, and Elevation of Privilege. Each letter 

refers to a particular category of threats that violates a certain desired property: 

TABLE 1.2: STRIDE FRAMEWORK DESCRIPTION 

 Category Desired Property 

S Spoofing Authentication 

T Tampering Data Integrity 

R Repudiation Non-Repudiation 

I Information Disclosure Confidentiality 

D Denial of Service Availability 

E Elevation of Privilege Authorization 

For each of these categories and corresponding violated properties, we enumerate all the 

threats that fall down within the category and are involved in that particular phase. To 

maintain conciseness, we avoid outlining threats that are not strictly part of the FLUIDOS 

environment, in particular regarding Kubernetes threats. Some online resources such as the 

OWASP Kubernetes Cheat Sheet already cover them in great detail and we expect FLUIDOS 

administrators to apply such best practices to their clusters as much as possible. 

In each table, every threat is labeled with a distinct id, of the form: 
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[THREAT TYPE]-[PHASE NUMBER]-[THREAT NUMBER] 

So, for example, the first threat of the Discovery phase that falls into the Spoofing category is 

labeled S11. Discovery phase threats are the first (X1Y), followed by the resource acquisition 

phase ones (X2Y) and finally the service request phase ones (X3Y). 

Finally, a mitigation table is provided following the compilation of all threat tables. Each 

threat is identified by its label and is associated with an assigned mitigation strategy. For the 

sake of brevity, threats that can be addressed with the same mitigation approach are 

grouped together. 

1.3.2 Threat Analysis Results 

1.3.2.1 Discovery Phase 

The following diagram describes the data flow of the discovery phase (1). 

Applying the STRIDE framework to the delineated boundaries, the subsequent threats have 

been identified. 

TABLE 1.3: LIST OF THREATS FROM THE DISCOVERY PHASE 

 Threat ID Threat Description 

S S11 Malicious entity could pose as a FLUIDOS node  

FIGURE 1.3: THE DATA FLOW OF THE DISCOVERY PHASE 
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 Threat ID Threat Description 

S12 Malicious entity could pose as a local catalog 

S13 Man-in-the-middle attack between the direct discovery of two nodes  

S14 Man-in-the-middle attack between a single node and a catalog (both 
registration and advertisement) 

S15 Node with low trust score could change ID and pretend to be a new 
one, re-advertising 

T T11 Malicious peer modifying the peering candidates database due to 
missing and/or improper validation of data sent through API 

T12 Malicious peer modifying the list of available peers due to missing 
and/or improper validation of data sent through API 

T13 Malicious manipulation of incoming policies and outgoing policies 
database, leading to acquisition (or vice versa) of resources that do not 
meet the requested security policies 

R R11 A FLUIDOS node claiming he never advertised to a local or the global 

FLUIDOS catalog. 

I I11 Enumeration of other nodes and their characteristics in (private) catalog 

by malicious nodes that gained access 

I12 Excessive information provided by nodes during advertisement (e.g. 

accidental information about OS) 

D D11 Continuously generating new IDs and advertising to the catalog  

D12 Continuously generating new IDs and advertising to other peers 

D13 Distributed DoS attack to the catalog(s) (e.g. SYN attacks) 

E E11 Insufficient authorization in catalog API, allowing privilege escalation by 

nodes (e.g. acting as supernodes) 

E12 Privilege escalation in discovery with a malicious node falsely acting as a 

supernode 
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1.3.2.2 Resource acquisition phase 

The following diagram describes the data flow of the Resource acquisition phase (2). 

Applying the STRIDE framework to the delineated boundaries, the subsequent threats have 
been identified. 

TABLE 1.4: LIST OF THREATS FROM THE RESOURCE ACQUISITION PHASE 

 Threat ID Threat Description 

S S21 Man in The Middle (MiTM) between the contract manager and Resource 
Acquisition Manager 

S22 Unauthorized user using the contract manager 

S23 MiTM between the resource importer and exporter, pretending to be a 
third node 

FIGURE 1.4: THE DATA FLOW OF THE RESOURCE ACQUISITION PHASE 
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 Threat ID Threat Description 

S24 MiTM in front of the resource importer, attempting to make the node 
negotiate with an attacker pretending to be the same node (in other words, 
what happens if a node tries to negotiate with itself?) 

S25 Broken/no API authentication between resource importer/resource 
exporter 

S26 Broken no/authentication in the available resources database, leading to 
fake K8s clusters accessing it 

T T21 Improper data validation in the resource importer (e.g. a node claiming he 
can export different resources than he has) 

T22 Improper data validation in the resource exporter (e.g. deceiving other 
nodes) 

T23 Fake clusters submitting/editing data in the available resources database  

T24 Malicious manipulation of incoming policies and outgoing policies 
database, leading to acquisition (or vice versa) of resources that do not 
meet the requested security policies 

T25 Attacker tampering with the signed contracts, deleting them, or signing 
non-existent ones 

R R21 Insufficient validation of contract data (e.g. wrong or non-existent 

information, expired digital signature, etc…) 

R22 Contract data insecurely stored allowing repudiation by other node 

R23 Insufficient logging or no updating in the available resources database (e.g. 

nodes claiming certain resources have never been shared) 

I I21 Contract data insecurely stored and viewable by other entities 

I22 Node gathering resource import requests and relaying them elsewhere 

(e.g. an attacker wishing to understand the patterns of deployment by a 

FLUIDOS node) 

D D21 Waiting a long period of time to respond to resource import requests, 
hanging nodes 

D22 Waiting a long period to sign contracts, rendering the shared resources 
unusable 
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 Threat ID Threat Description 

E E21 Privilege escalation in Service Handler API 

E22 Privilege escalation in the contract manager (e.g. user with read-only access 

allowed to sign contracts) 

1.3.2.3 Service request phase 

The following diagram describes the data flow of the Service request phase (3). 

 

FIGURE 1.5: THE DATA FLOW OF THE SERVICE REQUEST PHASE 
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Applying the STRIDE framework to the delineated boundaries, the subsequent threats have 

been identified. 

TABLE 1.5: LIST OF THREATS FROM THE SERVICE REQUEST PHASE 

 Threat ID Threat Description 

S S31 Threat actor can pretend to be another FLUIDOS node and make 
unprompted Service Handler requests via the Intent API 

S32 Threat actor can pretend to be an already peered FLUIDOS node and 
pretend to handle service requests via the intent API 

S33 MiTM between the orchestrator and the local K8s cluster, interrupting 
job scheduling 

S34 Malicious user can deploy copycats servers in a remote node and spoof 
the original service  

T T31 Insufficient data validation in API communications with the Service 
Handler 

T32 Manipulation of ratings and metrics database (e.g. as a result of other 
attacks), an attacker could poison the DB forcing the node to select 
some higher-ranked node instead and attempt co-location 

T33 Destination node could run your workload on tampered nodes (e.g. a 
OS different than the required ones, without a Trusted Environment 
(TEE) even if requested, or not on a FLUIDOS architecture at all) 

T34 Node could ask to remotely schedule a workload that uses tampered or 
compromised images, or that downloads container images from an 
untrusted registry 

T35 Malicious user, with workloads scheduled both remotely and locally, 
can cross boundaries and contact services they should not 

T36 Malicious user could exploit unfiltered system calls to tamper with the 
host’s file system, e.g., calling write() to files he should not access 

R R31 Insufficient logging in recursive service requests (e.g. node A relays to 

node B which relays to node C, but node B keeps no trace of this and 

node C cannot keep track of the original owner) 

I I31 Orchestrator leaking information when deploying workloads locally 

(e.g. service accounts being available from containers, that could be 

exploited by external users of the service) 
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 Threat ID Threat Description 

I32 Orchestrator leaking information when deploying workloads remotely 

(e.g. service accounts viewable from containers, location, OS details, 

exploitable by other FLUIDOS users) 

I33 Node could snoop on other tenants’ workloads, for example by 

inspecting their system calls, or attempting to understand what is being 

run in a TEE environment 

I34 Malicious user could exploit unfiltered system calls to exfiltrate data 
from the host 

D D31 User could abuse the resources of other nodes to launch DoSs (e.g. 
running CPU or memory intensive workloads) 

D32 User could repeatedly ask for deployments in remote resources 
regardless of the success of the requests 

D33 Malicious node could collect service requests from various other nodes 
and recursively relay all of them to a single victim node 

D34 Ignoring recursive service requests (a malicious node could receive a 
request, claim it was recursively scheduled elsewhere but in reality it 
was never scheduled at all) 

D35 Malicious user could exploit unfiltered system calls to mount a DoS 
attack to the host, e.g., opening sockets or creating files 

E E31 Insufficient authorization to access Service Handler API (e.g. 

unauthenticated nodes accessing it) 

E32 Malicious user could exploit underlying kernel vulnerabilities triggered 
through system calls and achieve privilege escalation 

1.3.3 Mitigation Mechanisms 

Subsequent to the identification of security threats, our focus shifted towards the exploration 

of potential mitigation mechanisms for each of them. 

As mentioned previously, the following table presents a brief recap of some possible 

mitigation strategies that could be pursued to address the threats that have been found in 

this analysis. 
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TABLE 1.6: LIST OF MITIGATION MECHANISMS 

Mit. ID Threat ID Mitigation 

M01 S31 
T33, T34 
R31 
D33, D34 

Provide a form of remote attestation to ensure the party the 
node of the OS or the workload is what they claim to be and is 
doing what they should. 

M02 S13, S14 
S21, S23, S24 
S33 

Provide a secure cryptography channel between nodes. 

M03 S15 
T32 

Create a globally-accessible, FLUIDOS-maintained trust 
database. This database could be addressable by ID, allowing 
any node to (anonymously) submit their trust scores and 
enabling other nodes to assess them. To account for further 
threats, authentication and possibly geographic distribution is 
recommended. 

M04 T11, T12 
T21-T23 
R11 
R23 
T31, T32 

Ensure the resource is resistant to attacks such as Injection, 
Cryptographic Failures and Security Misconfigurations [5]. In 
particular, assume any input that is being sent by nodes could 
be potentially malevolent and sanitize all incoming fields.  

M05 T13 
T24 

(only if the resource is to be handled locally by administrators) 
Ensure modifications to the resource are properly 
timestamped and revertible, and/or assess the trust of the 
administrator making such modifications.  

M06 T25 
R11 
R22, 23 
I21 

Ensure the security of the storage medium holding the data, 
e.g., using data encryption, redundancy, and access control. 
Provide Trusted Execution Environments (TEEs). 

M07 T25 
R11 
R23 
R31 

Ensure logs are properly configured, sorted, and accessible to 
the parties managing it. 

M08 R21 Ensure the cryptographic validity of the exchanged data, 

and/or do a background check on entities whose contract is 

being signed 

M09 I11 Implement rate limiting (or equivalent measure) and 
monitoring when querying catalogs, blocking too-curious 
nodes 
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Mit. ID Threat ID Mitigation 

M10 I12 
I31, I32 

Ensure the information inserted in API requests does not link 
private, sensitive, or unimportant data 

M11 I22 Accept the risk of threat, or, consider using privacy-preserving 

solutions, e.g., differential privacy, at the cost of misusing 

resources. 

M12 I33 Provide some form of differential privacy by, e.g., injecting 

noise into system calls 

M13 D11-D13 
D32 
D33 

Implement DoS/DDoS detection to detect repeated offenses 
even when the nodes’ advertised ID does not match 

M14 D21, D22 
D34 

Implement aggressive timeouts and adopt a pessimistic 
approach, e.g., assume the request will likely fail and in 
parallel ask for resources to more nodes 

M15 D31 Intercept requests from users and trim those that generate an 
excessive amount of workload or traffic. 

M16 S26 
E21 
E31 

Implement authentication strategies in the APIs (e.g. strong 
password requirements, MFA) for potentially 
destructive/administrative actions 
 

M17 S22, T25 
E22 

Implement MFA authentication for the contract manager. 

M18 S11, S12 
E11, E12 
S25 

Ensure proper authentication mechanisms are put in place 
(e.g. Decentralized IDentifiers (DIDs) and Verifiable 
Credentials (VCs)) between each FLUIDOS Node and the 
contacting FLUIDOS Supernode, preventing the former from 
acting as the latter and vice versa. 

M19 S34 
T35 

Ensure correct network isolation is employed to prevent 
unauthorized contacts between different tenants’ services. 

M20 T36 
I34 
D35 
E32 

Limit the set of system calls available to workloads, processes 
and users 

Note that the table above presents the mitigation that can be implemented independently 

of what we currently have and intend to do to guarantee the security of FLUIDOS. In light of 
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the outcomes derived from the threat analysis and the consideration of security requirements 

associated with our use cases, our efforts have been directed towards the design and 

development of the security services and mechanisms described in the forthcoming section. 

1.4 APPROACH OVERVIEW: SECURING THE FLUIDOS 

ECOSYSTEM 

Based on priorities, available resources, and capabilities, we categorized our contributions 

for the security of FLUIDOS along three distinct dimensions: the phases of creation and 

utilization of the fluid continuum, the origin of threats and potential targets (results of the 

threat model), as well as the expected outcomes (i.e., a Software tool, a Method, such as an 

algorithm or a procedure, or a combination of both). The following figure illustrates the eight 

core contributions to WP5, categorized according to these three dimensions. 

 

FIGURE 1.6: WP5 CORE CONTRIBUTIONS, IN LINE WITH THE FLUIDOS PHASES AND THE ATTACK SCENARIOS. EACH 

CONTRIBUTION COULD BE A (S)OFTWARE TOOL OR A (M)ETHOD, OR BOTH. 

In terms of the chronological horizontal dimension, we provide a summary of the FLUIDOS 

phases, encompassing the discovery of peering candidates, the resource acquisition 

(including negotiation, reservation, contract signing, and peering), and the usage. De-

peering is omitted as no specific security measures were taken for that phase, except for the 

updating of trust scores, which is related to activities carried out during the discovery and 

resource acquisition phases. Details about the challenges addressed within each phase are 

given in the following chapters. 

Concerning the origin of threats and potential targets (in the vertical dimension), we 

distinguish between three distinct scenarios in which a malicious actor could deliver an 

attack: 
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● Directly to the infrastructure via services (e.g. a container deployed in a third-party 

FLUIDOS node initiating a DoS attack) 

● To other services via its services (e.g., a container achieving co-location with other 

services and attempting to exfiltrate sensitive information) 

● To services via the infrastructure (e.g., a curious infrastructure provider, owner of a 

FLUIDOS node, seeking to understand which business services are being operated 

by its customers). 

The core WP5 contributions, flagged in Figure 1.6 as a novel Software tool ("S") or Method 

("M", referring to algorithms, protocols, policies, etc.), are briefly described here and 

presented in more detail (together with other contributions) in the following chapters. 

Starting from the top left of Figure 1.6, the establishment of trust is critical from the resource 

discovery and acquisition phases onwards, in which individual FLUIDOS nodes are 

aggregated into supernodes, and peering relationships are established. To address this, 

within T5.1, the project devised a distributed authentication and authorisation solution 

utilizing Distributed Ledger Technology (DLT) to issue credentials based on Decentralized 

Identifiers (DIDs). These proposed solutions, currently in the process of implementation as a 

set of software tools for FLUIDOS users, form the foundation of trust upon which nodes from 

various administrative domains can be evaluated. Please refer to chapter Secure Discovery 

and Resources Acquisition for more details. 

While resources are being acquired and before their utilization starts, it is imperative to 

segregate resources and restrict communications and interactions to precisely control 

undesired exchanges between assets and resources from different administrative domains. 

This ongoing activity, aims to protect a provider's services and infrastructure from potentially 

malicious users. It resulted in the development of an initial set of security primitives that have 

already undergone testing and integration into Liqo. Please refer to the section Isolation of 

Containers for more information. 

As resources across FLUIDOS nodes are peered and authorisation for use is granted, users 

expect verification that the system remains uncompromised and aligns with the agreed-upon 

specifications at the time of reservation. Furthermore, they require assurance that submitted 

workloads actually operate within this environment. During this first reporting period, our 

focus centred on system attestation, providing a methodology to be seamlessly integrated 

with the resource acquisition process. Please refer to Section System Integrity - Remote 

Attestation for more information. 

Even when users are correctly authenticated, possess access to a limited set of resources and 

capabilities, and are guaranteed that workloads run in the intended environment, there 

remains a potential threat from actors seeking to exploit remaining interfaces, assets, and 

information for malicious purposes. Hence, one of our initial tasks was to develop a tool for 

the automatic discovery of syscalls and capabilities invoked by applications running within 
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containers and restrict them to the bare minimum (Section Isolation of Containers). Yet, an 

honest-but-curious provider may still use the remaining interfaces between the containers 

and the kernel to gather business intelligence from workloads executed in the resources they 

share through FLUIDOS. Consequently, we have identified Workload confidentiality 

methods that could be employed for such attacks and proposed countermeasures. 

At the same time, a malicious user could attempt to disrupt the proper functioning of a 

FLUIDOS node, or target other services within the infrastructure. To address such threats we 

initially considered the trade-off between detection accuracy and monitoring depth, aiming 

for fast yet precise Threats and Intrusion Detection. Subsequently, we considered how 

problematic it could be for small FLUIDOS nodes to train an accurate model with a small 

amount of data. To address this issue, we introduced an effective methodology that improves 

federated learning to collaboratively train a model for threat detection across different 

FLUIDOS administrative domains. The proposed method considers non-independent and 

identically distributed data and avoids sharing any attack data from each FLUIDOS node. 

Recognising that these methods for threat and intrusion detection can be evaded (through 

adversarial machine learning, for instance), generate a substantial number of alarms, and are 

vulnerable to zero-day attacks, we put forth a proposal to augment them with a cloud-native 

approach to Cyber Deception This approach relies on orchestration capabilities to offer a 

resource-aware strategy for creating and deploying decoys. During the first reporting period, 

we developed an algorithm for the efficient selection of decoys and created a proof-of-

concept solution to be delivered as a FLUIDOS service. 

Finally, the following table summarizes, for each possible mitigation identified in Section 

1.3.3 and UC requirements defined in Section 1.2.4, the solutions proposed by FLUIDOS, 

outlining the status of the work. 

TABLE 1.7: OVERVIEW OF THE CURRENTLY-CONSIDERED MITIGATION MEASURES 

Mitigation 
ID 

UC 
Requirement 

Status FLUIDOS Solution 

M01 REQ-RSE-03 
REQ-TER-02 

Addressed partially in 
Year 1 

Attestation 

M02 REQ-RSE-04 
REQ-TER-03 
REQ-ROB-02 

Addressable with state of the art solutions 

M03  To be addressed in Year 2 

M04  Addressable with state of the art solutions 
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M05  Not addressed (architecture-dependent) 

M06 REQ-TER-01 
REQ-ROB-01 

Addressable with state of the art solutions 

M07 REQ-RSE-07 
REQ-TER-05 
REQ-ROB-01 

Addressable with state of the art solutions 

M08-M10  Addressable with state of the art solutions 

M11-M12 REQ-RSE-03 
REQ-TER-02 

Addressed in Year 1 Workload confidentiality 

M13 REQ-RSE-08 Addressed partially in 
Year 1 

Threat detection 
Cloud-Native Cyber Deception 

M14  Addressable with state of the art solutions 

M15  Addressable with state of the art solutions, some effort will 
be dedicated in Year 2 

M16  Addressable with state of the art solutions 

M17  Addressable with state of the art solutions 

M18 REQ-RSE-01 
REQ-RSE-05 
REQ-TER-02 

Addressed partially in 
Year 1 

Authentication 
and Authorisation 

M19 REQ-RSE-03 
REQ-RSE-05 
REQ-TER-02 

Addressed partially in 
Year 1 

Intent-based Border Protection 

M20 REQ-RSE-02 
 

Addressed in Year 1 Node Security Policy 
Enforcement 

The following chapters provide detailed descriptions of all the core WP5 contributions from 

requirement definition, to design, to implementation and testing. 
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2 SECURE DISCOVERY AND RESOURCES 

ACQUISITION 

2.1   AUTHENTICATION IN FLUIDOS 

FLUIDOS is oriented towards the sharing and use of resources within what is known as the 

Computing Continuum, taking a step towards the transparency of this sharing, FLUIDOS 

reaches and evolves in the field of "liquid computing". FLUIDOS architecture allows 

independent actors to reach agreements in order to share their resources in a fluidified way. 

Within this ecosystem, the various entities, represented as FLUIDOS nodes, must act as 

stewards of their own identities to maintain their autonomy. They should possess the 

capability to create and control their identities without relying on any centralized authority, a 

concept commonly referred to as Self-Sovereign Identity (SSI). 

The architecture leverages Decentralized Identifiers (DIDs), Verifiable Credentials (VC), and 

Distributed Ledgers to create a decentralized authentication framework. 

2.1.1 Decentralized Identifiers (DID) 

The Decentralized Identifiers (DIDs), defined in “Decentralized Identifiers (DIDs) v1.0” [6] as 

W3C recommendations, represent a new type of globally unique identifier designed to 

enable individuals and organizations to generate their own identifiers using systems they 

trust. This is the main reason why they are well suited to the needs of an authentication 

architecture in which identity is self-managed.  

By design, DIDs allow the holder to control them without the need for a third party. DIDs are 

URIs that associate a DID subject with a DID document allowing trustable interactions 

associated with that subject. Each DID document can express cryptographic material, 

verification methods, or services, which provides a set of mechanisms enabling a DID 

controller to prove control of the DID. Figure 2.1 shows the current FLUIDOS DID structure: 

Maintaining the DID format from the specification, the generic DID scheme is a URI scheme 
conformant with [RFC3986]. 

FIGURE 2.1: FLUIDOS DID STRUCTURE 
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2.1.2 Verifiable Credentials (VC) 

Another element necessary to authenticate the actors of an interaction are credentials. The 

credentials will provide information that will enrich the identity information of the person 

presenting it. W3C recommendation “Verifiable Credentials Data Model v1.1” [7] provides 

us with a model that aims to standardize this exchange of credentials.  

Using verifiable credentials their holders can generate verifiable presentations to be shared 

with verifiers to prove they possess those verifiable credentials. 

The possibility to transmit verifiable credentials and verifiable presentations rapidly, makes 

them convenient when trying to establish trust at a distance. 

2.1.3 Distributed Ledgers (DL) 

The objective of distributed ledgers, as components in FLUIDOS authentication architecture, 

is to provide immutable and auditable support for identity management and trusted data 

sharing. 

DL component enriches the authentication architecture acting as secure storage of data 

related to identity and trust. This data is related to the identity management such as public 

cryptographic material and decentralized identifiers (DID) from the Self Sovereign Identity 

scheme of FLUIDOS. 

2.1.4 FLUIDOS decentralized authentication architecture 

 

FIGURE 2.2: PRIVACY AND SECURITY MANAGER MODULE OF FLUIDOS 
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In the proposed decentralized authentication architecture for FLUIDOS, the Privacy and 

Security Manager module will integrate the Self-sovereign identity (SSI) Management 

component.   

This component is responsible for: 

● Control the identity of the FLUIDOS Node generating its own identifier, acquiring its 

VCs and storing them in their own wallet and presenting these credentials or 

verifiable presentations to allow the identification of the node. 

● Contribute to the identity of the other FLUIDOS Nodes inside the borders of its 

domain. Acting as issuer, it will provide VCs to other nodes inside its domain. 

● Verify the VCs or verifiable presentations presented from other nodes. Each node 

inside the domain will be able to verify credentials received from other nodes, from 

the same domain or not. 

● Publish in the DL public cryptographic material in a way that is accessible and 

auditable at any time. It enables the use of privacy-preserving credentials, 

decentralized IDs. 

2.1.5 Usage scenario: Identity Bootstrapping 

The first envisioned scenario is the generation of the identity of the FLUIDOS node. In this 

scenario there are two possibilities: 

● When the bootstrapping node is alone in the domain: When the node starts in an 

empty domain it is expected that this node will be the supernode of that domain. 

a. As the starting node does not have a DID to use for its identification it should 

generate it. SSI Management component is asked to generate a new one. 

b. Using the newly generated DID the next step is to ask SSI Management to 

generate a verifiable credential. As this node is the supernode because it is 

the first node in the domain, it should generate a verifiable credential for itself.      

c. The newly generated verifiable credential should be stored in the supernode 

wallet and its signature can be verified by anyone with access to the DLT by 

obtaining the public key found in the DID (publicly available) of the issuer 

(supernode) that has issued that verifiable credential, in this case the issuer is 

himself. 
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• When there exists a supernode in the domain. When a node starts in a domain with 

a supernode in charge, the flow is a bit different. 

a. As the starting node does not have a DID to use for its identification it should 

generate it. SSI Management component is asked to generate a new one. 

b. Using the newly generated DID the next step is to ask SSI Management to 

generate credentials. As a supernode exists in the domain, the starting node 

asks the supernode to generate a verifiable credential for him.     . 

c. The newly generated verifiable credential should be stored in the node wallet 

and its signature can be verified by anyone with access to the DLT by obtaining 

the public key found in the DID (publicly available) of the issuer (supernode) 

that has issued that verifiable credential. 

 

 

 

 

FIGURE 2.3: SOLE NODE BOOTSTRAPPING PROCEDURE 

FIGURE 2.4: BOOTSTRAPPING PROCEDURE IN A MULTI-NODE DOMAIN 
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2.2   AUTHORIZATION AND TRUST SCORES  

Authorization in FLUIDOS, as happens with authentication, must maintain the characteristic 

of decentralization; to do so, in the Computing Continuum the trend is to design Zero Trust 

architectures (ZTA). Zero Trust paradigm starts from the premise that trust is never granted 

implicitly but must be continually evaluated. Resources must be restricted to those with a 

need to access and grant only the minimum privileges needed to perform the mission. 

The basic Zero Trust tenets adapted to FLUIDOS are: 

● All the components put in place to provide shared services in FLUIDOS are resources. 

● All communication is secured regardless of network location, especially because that 

communication could be from a third party. 

● Access to individual resources is granted on a per-session basis. Trust in the requester 

is evaluated before the access is given and it should be granted with least privilege 

basis. Authentication and authorization should be evaluated per resource, access to 

one resource will not automatically grant access to a different resource. 

● The policy to access resources is dynamic and may include other behavioural and 

environmental attributes. 

● FLUIDOS nodes will monitor and measure the integrity and security posture of all 

owned and associated resources. Trust is not inherent to the resources. FLUIDOS to 

implement ZTA should continuously monitor the state of resources and apply 

corrective measures as needed. 

● All resource authentication and authorization are dynamic and strictly enforced 

before access is allowed. Accessing a resource is a constant cycle of obtaining access, 

assessing threats, reevaluating trust in ongoing communication. 

● FLUIDOS nodes will collect as much information as possible about the current state 

of resources and use it to improve its security. 

FIGURE 2.5: PRIVACY AND SECURITY MANAGER OF FLUIDOS NODE 
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The ZTA reference design independent of deployment models consists of three types of core 
components: Policy Engines (PEs), Policy Administrators (PAs), and Policy enforcement 
points (PEP) PEPs. 

● Policy engine (PE): PE is responsible for the decision to grant access to a resource for 

a given subject. The PE uses FLUIDOS policy as well as input from external sources 

(e.g., CDM systems, threat intelligence services) as input to a trust algorithm in charge 

of granting, denying, or revoking access to the resource. The PE is paired with the PA. 

PE makes and logs the decision (as approved, or denied), and the policy 

administrator executes the decision. 

● Policy administrator (PA): PA is responsible for establishing and/or shutting down the 

communication path between a subject and a resource (via commands to relevant 

PEPs). It would generate any session-specific authentication and authentication token 

or credential used by a client to access a FLUIDOS resource. If the session is 

authorized and the request authenticated, the PA configures the PEP to allow the 

session to start, else it will send signals to the PEP to shut down the connection. 

● Policy enforcement point (PEP): PEP is responsible for enabling, monitoring, and 

eventually terminating connections between a subject and a FLUIDOS resource. The 

PEP communicates with the PA to forward requests and/or receive policy updates 

from the PA. FLUIDOS components with security needs should include PEP 

functionality. 

Besides these core elements, the FLUIDOS trust management depends on the SSI 

Management to make the functions of the ID management system that is mentioned on the 

ZTA. This is responsible for creating, storing, and managing FLUIDOS Nodes identity and 

credentials records in the Distributed Ledger. This system contains the necessary subject 

information (e.g., name, email address, certificates) and other node characteristics.  

2.3  FLUIDOS TRUSTED EDGE  

Besides trust between FLUIDOS nodes and super-nodes, it is important to establish security 

between the FLUIDOS Edge infrastructure and the edge/IoT devices. To do that, it is 

fundamental to support trusted computing devices, operating systems, edge microservice 

communications and networking. Trust between FLUIDOS Edge components and edge 

devices can be achieved by adopting protocols such as TLS which can offer mutual 

authentication and confidentiality (data encryption) between two communicating parties. 

Another important aspect related to security on the edge is to provide secure storage for 

sensitive data such as keys, certificates, and credentials. 

In this direction, we integrate the SPIFFE/SPIRE framework to provide authentication and 

encryption between the edge infrastructure and IoT devices. We also explore the 

STM32Trust TEE Secure Manager to enable secure storage on high-performance STM32 

microcontroller devices (secure elements). Finally, we introduce the PARSEC micro-service 
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which is an abstraction layer that eliminates the complexity required by the edge 

infrastructure to communicate with the various secure elements (IoT devices) available today. 

2.3.1 SPIFFE/SPIRE 

SPIFFE [8] is a Cloud Native Computing Foundation (CNCF) framework composed of a set 

of open-source standards for securely identifying software systems in dynamic and 

heterogeneous environments. Systems that adopt SPIFFE can easily and reliably mutually 

authenticate wherever they are running. SPIFFE is the selected framework solution for 

providing secure identity in the form of a specially crafted X509 certificate. By using and 

further evolving SPIRE, a tool that implements the standards set by SPIFFE, we can issue 

certificates both for the FLUIDOS Edge entities and the leaf edge devices so that each party 

can authenticate itself against the other party. Another important role of SPIRE is that it 

provides node and workload (process, pod etc.) attestation. 

Typically, a SPIRE deployment consists of a SPIRE server installed in one node and one or 

more SPIRE agents installed in each node of a Kubernetes environment (Figure 2.6). 

 

A SPIRE server manages all identities in its configured SPIFFE trust domain. Apart from that, 

it performs node attestation to authenticate all the agent identities in its domain. Finally, it 

creates SPIFFE Verifiable Identity Documents (SVID) for workloads when requested by an 

authenticated agent. 

A SPIRE agent requests SVIDs from the SPIRE server and caches them until a workload 

requests its SVID. Moreover, it performs workload attestation to verify the authenticity of the 

workload identities. 

 

 

 

 

 

FIGURE 2.6: SPIRE ARCHITECTURE 
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2.3.2 STM32Trust TEE Secure Manager  

The STM32Trust TEE Secure Manager is a suite of system-on-chip (SoC) security solutions 

that simplify the development of embedded applications with security features and services.  

It offers support for secure boot, root of trust, cryptographic functions, secure storage, 

attestation, and secure firmware updates. The ARM TrustZone [9], available in STM32 

microcontrollers, can be configured to create secure memory regions and privileged access 

to peripherals (Figure 2.7). Among the numerous security solutions, we emphasize secure 

storage on the STM32 microcontrollers to provide secure elements for sensitive data of the 

FLUIDOS Edge environment. 

2.3.3 The PARSEC Abstraction Layer   

PARSEC (Platform AbstRaction for SECurity) [10], is an open-source initiative to provide a 

common API to hardware security and cryptographic services in a platform-agnostic way. 

This abstraction layer keeps workloads decoupled from physical platform details, enabling 

cloud-native delivery flows within the data center and at the edge. Computing platforms have 

evolved to offer a range of facilities for secure storage and secure operations such as 

Hardware Security Modules (HSMs), Trusted Platform Modules (TPMs) or firmware services 

running in Trusted Execution Environments (TEEs). 

FIGURE 2.7: SECURE MANAGER EMBEDDED SOFTWARE EXPLOITING ARM® TRUSTZONE® FEATURES 
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Parsec is an abstraction layer that allows cloud-native workloads, programming languages 

and containers to access hardware secure storage/service facilities in an effortless and 

consistent way through its API without worrying about the underlying complexity and 

diversity of the hardware secure elements. In addition to the common API, the PARSEC 

service offers multitenancy, that is, the underlying security facilities can be shared amongst 

multiple client applications. 

2.3.4 Mutual Authentication   

The role of the FLUIDOS Edge infrastructure is to make IoT resources (microcontrollers, 

sensors, etc.) and corresponding data available to the FLUIDOS node. The origin of these 

resources has to be trusted inside the FLUIDOS domain, so, an important step in this 

direction is to secure both the devices and the data path starting from the IoT leaf edge 

devices (LEDs) until they reach a cloud application. 

In our implementation depicted in Figure 2.9, an InfluxDB application is deployed in the 

Cloud Node to provide a means of storage for data received by LEDs. A Mapper is deployed 

in the Edge Node to make an LED available to the FLUIDOS Edge environment. It uses the 

Bluetooth protocol to pair with the LED and start receiving data from the latter which are then 

published to the MQTT broker. The Router is a service deployed in the Cloud Node that 

receives LED data which in turn are forwarded to the InfluxDB application according to rules 

that were set earlier. 

Based on the data flow described above there are three paths that have to be secured since 

they constitute communication with external systems/components: 

●  Mapper ↔ LED   

● EdgeCore ↔ CloudCore 

FIGURE 2.8: THE PARSEC SERVICE FACILITATES ANY WORKLOAD TO ACCESS ANY UNDERLYING 

SECURE ELEMENT [10] 
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● Router → Cloud application (e.g., InfluxDB) 

At this point, we introduce SPIRE which is responsible for providing certificates to the 

FLUIDOS Edge entities and securing the three paths above. For this case, we utilize three 

SPIRE agents to perform the workload attestation, issue and deliver the certificates (SPIFFE 

identities) for the entities involved, that is, CloudCore modules, EdgeCore modules and 

Mapper, LED, and Cloud application. Once all certificates are delivered, all entities involved 

can mutually authenticate each other and securely communicate over TLS. 

2.3.5 Edge Devices Secure Storage 

Certificates issued by the SPIRE deployment or other sensitive data like login credentials and 

keys need to be securely stored. Our solution combines the STM32Trust Tee Secure 

Manager suite along with high-performance STM32 microcontrollers equipped with ARM® 

TrustZone® to offer secure storage solutions to the FLUIDOS Edge environment. 

A SPIRE agent is responsible for delivering a certificate (SPIFFE identity) to an application 

that can take advantage of the underlying secure storage to write its certificate by integrating 

the PARSEC client library which communicates with the PARSEC micro-service through an 

API. The application passes its identity to PARSEC in the form of a token. In turn, PARSEC 

FIGURE 2.9: ARCHITECTURE AND DATA FLOW IN THE FLUIDOS EDGE ENVIRONMENT 
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validates the authenticity of the document by querying the SPIRE agent. The verified identity 

is then stored in the STM32 secure element (Figure 2.10). 

 

 

FIGURE 2.10: STM32 TRUST TEE SECURE MANAGER AND PARSEC FOR SECURE STORAGE 
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3 SECURE USAGE OF FLUIDOS CONTINUUM 

3.1   SYSTEM INTEGRITY - REMOTE ATTESTATION 

One of the main security goals of FLUIDOS project is to ensure the secure execution of 

workloads, requests and response messages across the FLUIDOS ecosystem, leveraging the 

capabilities of Trusted Execution Environments (TEEs) and considering different possible 

implementations. The work in this area mainly focused on how to investigate the authenticity 

and integrity of an environment by means of Remote Attestation (RA) mechanisms. 

There are various existing implementations of Remote Attestation with widely different use 

cases, supported platforms, security models, and integrations; as such, it can be interesting 

to consider quite broadly the foundational ideas behind RA. The objectives of using RA in 

the context of Confidential Computing can be summarized as follows: “Ensuring that a 

remote system is trustworthy through its endorsement by a mutually trusted intermediary” 

This sentence can be dissected as such: 

● A Remote System represents any system we must interact with, upon which we do not 

have absolute control, such as a cloud virtual machine or a smartphone. 

● Trustworthy means that only trusted code and data are running within the system. 

Also, any relevant associated system metadata, such as debugging or security 

options, are as expected.  

● Endorsement means that some entity can produce proofs of some kind as to the 

system’s state. It is also implied that the entity has the technical ability necessary to 

ensure the proofs’ validity. 

● Mutually Trusted Intermediary A third party explicitly trusted by both the remote 

system and the entity requesting the remote attestation. Often the manufacturer of 

the Remote System or a critical component within (CPU, SoC, or TEE). 

3.1.1 State of the Art 

3.1.1.1 High-Level Definition of Remote Attestation 

Conceptually, remote attestation consists of an untrusted entity providing claims to a third 

party that can be substantiated through the intervention of one or more commonly trusted 

entities. 

While multiple ways exist to define the specifics of a remote attestation mechanism, this work 

uses the trust model from the "Remote Attestation Procedures Architecture" IETF draft [11] 

when describing the various existing remote attestation mechanisms. Namely, the following 
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(non-exhaustive list of) relevant roles, which the same entities may hold, are present in their 

trust model: 

● Attester: An entity that produces relevant evidence to be used by a Verifier. This 

evidence is most often related to the system managed by the Attester. This evidence 

may be cryptographically protected. In the case of AMD SEV-SNP, the Attester is the 

AMD Platform Security Processor, producing evidence (attestation reports) regarding 

a VM it manages and protects. 

● Relying Party: An entity that depends upon the validity of information about the 

system managed by the attester. It relies on a Verifier to ensure that the information 

provided by the Attester about the system is valid and can be actioned upon. In the 

case of AMD SEV-SNP, the Relying party would be the entity that relies upon the VM 

being appropriately started and being in a trustworthy state (e.g., A bank that wishes 

to ensure their data is only provisioned to a trusted VM). 

● Verifier: An entity that trusts the manufacturer of the Attester, it can rely on its 

endorsement of the Attester’s evidence to be assured of its validity. It then produces 

actionable attestation results for the Relying Party. In the case of AMD SEV-SNP, the 

Verifier would be the application that requests the relevant certificate chains from 

AMD’s key distribution servers and uses it to check the signature of the attestation 

report. Finally, it provides relevant information to the Relying Party from the contents 

of the attestation report. 

● Endorser: An entity that endorses the validity of the evidence produced by the 

Attester and is trusted by the Verifier. In the case of AMD SEV-SNP, this endorser 

would be AMD which provides the signing keys to the Attester and ensures they are 

unusable by third parties. It then provides the associated public keys to the Verifier 

While their model has other less significant roles, those four are the most important ones 

when considering and analysing various Remote Attestation implementations. 

3.1.1.2 Proposed Simplified Taxonomy 

Various technological trade-offs exist with the use and implementation of remote attestation 

mechanisms; as such, it is interesting to produce a relevant taxonomy. While detailed and 

motivated taxonomy exists for remote attestation within embedded systems [12], its 

usefulness is significantly restricted when also considering both smartphone and server-

based remote attestation mechanisms. 

As such, the following simplified taxonomy targeted at FLUIDOS relevant needs is proposed:  

● Hardware-Based/Software-Based mechanism: This distinction is made on whether 

the remote attestation mechanism relies upon hardware-specific instructions 

dedicated to remote attestation or if the mechanism relies upon software running on 

a platform-specific or architecture-specific trusted execution environment (potentially 
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with hardware-backed key management). This distinction informs the future flexibility 

of mechanisms in already shipped hardware. Indeed, software-based mechanisms 

could be much more evolutive through potential firmware updates, whereas 

hardware instruction sets could not see much evolution for shipped hardware.  

 

● Software/System Attestation: This distinction is made on whether the remote 

attestation mechanisms attests to the state of a given software within a system or if it 

attests to the state of an entire system.  

It informs the use cases of such attestation mechanisms; software attestation is more 

axed towards ensuring that a given software was not tampered with, while allowing it 

to run within various untrusted systems. System attestation would be preferred to 

ensure the state of an entire OS. 

 

● Online/Offline Verification: This distinction is made on whether or not the verification 

of attestation results requires communications between the Verifier and a third party, 

such as the Endorser. 

It informs on how reliant the Verifier will be upon the Endorser at runtime. Long term 

support for the mechanism by the Endorser may be impacted, along with increasing 

the complexity of using the mechanism within a fully isolated network. 

 

● Flexible/Rigid Chain of Trust: This distinction is made on whether the chain of trust 

used by the Verifier to tie the attestation results to the Endorser is rigid or may be 

updated later for any purpose without introducing new hardware. 

It informs about how likely the mechanism may recover from a partial chain of trust 

breach, with flexible chains somewhat more likely to recover than rigid ones. 

Typically, rigid chains of trust are present in hardware-based mechanisms and flexible 

ones within software-based mechanisms, with some exceptions. 

3.1.1.3 Remote Attestation Mechanisms 

Current RA mechanisms are used in many contexts, hardware, and security requirements. 

The following is a non-exhaustive list of known RA mechanisms and a high-level description 

of their inner workings, uses, and detailed taxonomy as previously defined. This information 

is also available in Table 3.1. Table 3.2 describes the entities holding the various available 

roles. 

TABLE 3.1: TAXONOMY OF VARIOUS REMOTE ATTESTATION MECHANISMS 

Mechanism Implementation Scope Verification Chain of Trust 

ARM TrustZone  Software N/A N/A N/A 

TPM 1.2/2.0 Hardware System Offline Rigid 
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Android Safety Net / 
Play Integrator 

Software Software/ System1 Online Flexible 

iOS Device Check Software Software1 Offline Flexible 

AMD SEV (-ES) Software System Offline2 Rigid 

AMD SEV-SNP Software System Online Flexible 

Intel SGX Hardware Software Online Flexible 

Intel TDX Software System Online Flexible 

 

TABLE 3.2: REMOTE ATTESTATION ROLES WITHIN VARIOUS IMPLEMENTATIONS 

Mechanism Attester Relying Party Verifier Endorser 

ARM TrustZone  TEE Software N/A TEE  or 
Endorser server 

TEE software dev 
or SoC vendor 

TPM 1.2/2.0 TPM End user End user TPM Vendor/ 
Manufacturer 

Android Safety Net 
/ Play Integrator 

Android TEE3 App 
developer 

Google  Google 

iOS Device Check iOS TEE4 App 
developer 

Apple or App 
developer 

Apple 

AMD SEV (-ES) AMD Firmware VM owner5 VM owner AMD 

AMD SEV-SNP AMD Firmware VM user5 VM user AMD 

Intel SGX Intel ISA & Intel 
Enclave 

Software 
developer 

Intel Intel 

Intel TDX Intel Firmware 
& Enclave 

VM user Intel Intel 

 
1 While Android’s SafetyNet/Play Integrity mechanism ensures the application and the system it runs on are 
trustworthy, iOS DeviceCheck only protects the application’s trustworthiness without giving any assurances if the 
underlying device is modified. 
2 While this mechanism’s initial provisioning phase requires online verification with Apple’s servers, future 
verifications can be done without any communications with Apple’s servers. 
3 Android TEE depends on platform architecture, ARM TrustZone for ARM Android versions. Unable to determine 
the exact TEE platform used for x86_64 versions. 
4 iOS TEE is the security coprocessor named "SecureEnclave". 
5 In this context, the VM owner and user represent two distinct entities. The VM owner is considered a privileged 
party to the proper execution of the VM, distinct from the VM Host. In the context of cloud providers, due to 
security concerns, this is most often the cloud service provider itself and not its end user. The VM user, however, 
is simply the entity that will use the VM once it has been launched. 
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A detailed study of the remote attestation mechanisms provided by AMD SEV and Intel 

SGX/TDX were performed but will not be detailed here for the sake of simplicity. However, 

the outcome of these studies highly participates in the following design and development. 

3.1.2 Attested Launch Protocol Design 

"Attested Launch" is a concept that relies upon Remote Attestation to ensure that a given 

system may only be started if a given RA mechanism is carried out successfully and makes it 

inoperable any other way, through the late provisioning of critical cryptographic material.   

When integrated with FLUIDOS, this protocol can substantially enhance the trustworthiness 

of dynamically shared resources across FLUIDOS clusters, ensuring that offloaded workloads 

are executed only on nodes with a verified and trustworthy OS. This is especially crucial in 

dynamic, decentralized environments where the risk of encountering a corrupted or 

malicious node is high. Notably, we believe that scenarios with a corrupted or malicious 

FLUIDOS node may include:  

● Workload offloading: The attested launch protocol would prevent the workload from 

being offloaded if the node's OS does not match the verified, trustworthy state. 

● Dynamic Resource Sharing: With the attested launch protocol in place, before any 

resources are shared or borrowed, the integrity of the target system is confirmed. A 

malicious node that has been tampered with would be identified and isolated, 

ensuring it doesn't participate in the resource-sharing pool. 

● Data security: the attested launch protocol would ensure that any node handling 

sensitive data has an OS that hasn't been tampered with, protecting against data 

leaks or unauthorized data manipulation. 

To demonstrate this, we developed a Proof-of-concept where attested launch is achieved by 

storing the system (Ubuntu 20.04)’s root partition behind a LUKS encrypted disk for which 

the key will only be transmitted upon a successful RA mechanism run. In the event of a RA 

failure, no key shall be delivered, and the system will not be able to start.  

In this PoC we attested the launch of a VM representing the system to be attested. This 

attestation will also guarantee a certain amount of isolation for workloads and containers 

deployed within the VM. 

3.1.2.1 Requirements and technical baseline 

The remote attestation mechanism must be able to attest to the initial state of a system and 

not only an application. It must also be able to carry arbitrary data such that replay protection 

may be implemented in the form of a nonce within the attestation report. Furthermore, it 

must be possible to ensure that only code belonging to the VM owner may run within the 

VM hosting the system, or at the very least, that a strong chain of trust may be established 

from the initial VM image provided by the host (and properly audited), up to the OS level. 
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After careful consideration of the remote attestation mechanisms provided by AMD and Intel, 

we decided to base the first proof of concept on the SEV-SNP remote attestation platform, 

with some considerations taken to ensure future compatibility with Intel TDX. 

This protocol relies on the following entities : 

● Guest VM: AMD SEV-SNP VM instance that is trying to prove it has not been tampered 

with to request cryptographic secrets. 

● Verifier: The entity holding the required cryptographic secrets, provisioning them to 

the Guest VM if it can assert it has not been tampered with. 

For the protocol to be usable with multiple VM instances simultaneously, it must be possible 

to segregate the LUKS secret between instances. In order to do so, a 32-byte identifier will 

be used during the protocol. 

3.1.2.2 Threat Model 

In the context of this attested launch protocol, the most important asset to secure is the 

cryptographic payload associated with a given identifier (the LUKS key that unlocks the 

instance’s disks) . Note that we will exclusively focus on the Attested Launch protocol and not 

the underlying Remote Attestation mechanism. It is assumed that AMD takes the necessary 

steps to ensure the security of SEV-SNP through security advisories and updates to relevant 

firmware blobs. A high-level overview of the threat model can be found within Figure 3.1. 

FIGURE 3.1: THREAT MODEL OF ATTESTED LAUNCH ON AMD SEV-SNP 
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3.1.2.3 Protocol Design 

The attested launch is achieved according to the following steps: 

1. The guest VM connects to the Verifier through its virtio-vsock with the help of the host. 

2. The guest VM sends the message "Begin Verification <ID> ", ID being a 32-byte VM-

specific identifier provided by KVM at VM launch in the HostData SNP field (or baked 

into the OVMF image if KVM does not allow for HostData provisioning). 

3. The Verifier checks that the ID value is known and sends a 32-byte nonce. 

4. The guest VM attaches to the attestation report the nonce and the ID value. It then 

transmits the attestation report to the Verifier. 

5. The Verifier then checks if the attestation report is correctly signed with AMD’s keys, 

that the attached nonce matches the one provided during the communication, and 

that the ID value matches the one used to initiate the session. From there, the Verifier 

sends a payload containing any relevant cryptographic material 

Figure 3.2 provides a description of the protocol. 

Note that the protocol assumes the following:  

● Channel Security Requirements: This protocol would rely upon a 1-way 

authenticated, confidential channel that is integrity-preserving. For this PoC, the 

channel has been established through TCP over TLS 1.3 between the guest VM and 

Verifier; the guest will be able to authenticate the Verifier through a provisioned 

certificate chain in the initramfs with the help of pinned trust anchors. 

The use of a 1-way authenticated channel instead of a 2-way authenticated channel is 

that this protocol itself does not care about who is communicating with the server. 

Any guest communicating with the server holding a valid identifier and its associated 

FIGURE 3.2: PROOF OF CONCEPT ATTESTED LAUNCH PROTOCOL 
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launch measurements from the remote attestation mechanism will be given the secret 

associated with the identifier. As such, the task of ensuring that a received secret is 

verified in depth (i.e., that it properly unlocks the underlying disk) and safe aborts in 

case of failure is left to the measured code to implement. 

The use of 2-way authenticated channels would prove too complex to set up in a way 

that may not be manipulated by either the underlying host or guests themselves. 

● Communications Between the VM and Verifier: The communication between the 

guest VM and the Verifier is somewhat outside the scope of the protocol itself. It is 

assumed that the underlying host and measured part of the guest will cooperate in 

such a way as to facilitate the opening of a TLS 1.3 channel to the Verifier through the 

time synchronization required for TLS 1.3 and networking necessary for cloud service 

provider contexts. 

3.1.2.4 Security claims 

The following are security claims that may be obtained from the protocol, assuming that  the 

technology of the underlying Remote Attestation mechanism was not compromised and that 

the entire VM code was controlled by the VM developer : 

● A VM may only start if its initial code was not tampered with. Indeed, through Remote 

Attestation measurement, we can check that the initial code was as expected.  

● A VM may only start if it was launched inside authorized hardware (AMD SEV-SNP 

compatible CPU). Indeed, through Remote Attestation measurement, we can check 

that the system is running on a genuine CPU. 

● Disk encryption keys may only be distributed to the VM if it is trusted. Indeed, through 

the first two security claims, we can be sure that we are running with untampered 

code within genuine, trusted hardware. As such, only a trusted instance may receive 

the encryption keys. 

● Disk encryption keys may not be distributed by the protocol to any entity other than 

the VM or code running within the VM. Indeed, since the protocol runs within a TLS 

1.3 channel that authenticates the Verifier, preventing a man-in-the-middle attack, the 

encryption keys may not be intercepted in transit. Due to the use of an inter-protocol 

nonce, captured reports may not be replayed at a later date to obtain the encryption 

keys.  

Due to the first three security claims, only a trusted VM may trigger the distribution of 

disk encryption keys. As such, only the VM or any code running within the VM may 

receive the encryption keys. 

NB: If the underlying protocol was to be Intel TDX, this claim could be pushed further 

such that "Only the VM may receive the encryption key, and only at boot time". 

● A VM may only start if a distant system authorized its start (allows for permanent 

decommission of remote VMs). Indeed, Due to the disk encryption keys never being 

distributed to an unauthorized third party, if at any point the given VM instance were 
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to be discontinued, this could be enforced through the distant system no longer 

provisioning the disk encryption keys. 

● A VM may start securely even if the underlying host is untrustworthy or even malicious. 

Indeed, due to all the preview security claims and running exclusively trusted code 

within the VM, so long as the security of SEV-SNP remains uncompromised, the 

underlying host is unable to negatively impact the security of the virtual machine, 

aside from messing with data availability. 

3.1.3 Attested Launch PoC Implementation 

The implementation of the protocol has been done using Rust programming language 

whose emphasis on memory safety through its unique ownership system and borrow checker 

minimizes common vulnerabilities, such as buffer overflows and data races.  

We also decided to implement the Verifier part of the protocol as modularly as possible. This 

is mostly due to a wish to not hinder the potential future adoption of alternative viable remote 

attestation mechanisms within FLUIDOS such as Intel TDX. 

It was also decided to abstract away the TLS functionality from the Verifier and relegate it to 

a reverse proxy, such as to reduce the complexity of the Verifier codebase. 

A simplistic proof of concept client was also written with code size considerations such that 

it would be able to run in a size-restricted early-boot environment. 

Verifier Code the Verifier code includes the following information: 

● guest_id: The instance identifier, allowing for multiple VMs with the same 

measurements to receive distinct secrets 

● expected_measurement: The measurement we expect to find in an Attestation Report 

for a given instance identifier. 

● secret: The secret associated with the identifier is to be released at the end of the 

attested launch protocol. 

This persistence layer was accomplished through the rust "Diesel" ORM with the sqlite3 

backend. 

Remote Attestation Report Abstraction: Handling of Remote Attestation processing was 

relegated to a trait to ease the future implementation of other RA  mechanisms. The code of 

this trait can be found in Figure 3.3. 
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The implementation of this trait for the AMD SEV-SNP trait was mostly delegated to the 

"sev_snp_utils"[13], Rust crate, implementing all required methods for parsing and verifying 

the validity of an attestation report, along with all relevant network requests and certificate 

caching. 

Client Code: 

For this PoC, client code relies upon the "easy-tokio-rustls"[14] crate to provide simple TLS 

communication support with custom trust anchors, allowing for simple certificate pinning 

support. 

This client code will have to be rewritten for FLUIDOS. Client code will connect to a distant 

Verifier server through a TLS channel, proceed to run the attested launch protocol, and on 

success, print the secret to standard output. 

Testing: 

Proper testing was mostly dedicated to the implementation of the Verifier aspect of the 

protocol. Most of the testing was around a subset of the failure modes identified previously. 

Testing is done through a Python script that interfaced with the Verifier through a TCP client 

and interfaced with a SEV-SNP capable VM with relevant Remote Attestation helper scripts 

through SSH. 

The following failure modes were tested successfully through this method: 

● Unknown identifier (trust on first contact). 

FIGURE 3.3: RUST TRAIT FOR INTERFACING WITH REMOTE ATTESTATION MECHANISMS 
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● Attestation signature validation failure. 

● Identifier mismatch within attestation report. 

● Nonce challenge mismatch within attestation report. 

● Launch measurement mismatch within attestation report and expected values 

The results of such failure modes can be seen in Figure 3.4. 

3.2   ISOLATION OF CONTAINERS 

One of the main objectives of WP5 is to establish a reliable and isolated environment for 

running workloads on horizontally distributed FLUIDOS nodes. Achieving this goal involves 

the development of security mechanisms to protect FLUIDOS nodes from malicious users as 

well as to protect users from honest-but-curious FLUIDOS providers.  

In this context, we, first, introduce Intent-based border protection, a policy-driven 

orchestration solution to automate the configuration of isolation primitives, e.g., Kubernetes 

Network Policies, across the entire orchestrated domain. 

FIGURE 3.4: OUTPUT LOGS OF THE VARIOUS FAILURE MODES TESTES 
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Second, we present a tool designed to automatically determine the minimal privileges 

required for proper container functionality (as detailed in Section 3.2.1). This tool plays a 

crucial role in reducing the size of the container-kernel interface, thereby lowering the 

likelihood of adversaries with control over a container launching attacks against the 

underlying host. 

3.2.1 Intent-based Border Protection 

FLUIDOS is designed to work in a multi-cloud and multi-tenant environment, where each 

physical node could be shared by multiple and heterogeneous users, possibly belonging to 

different administrative domains. This approach has several advantages in terms of costs and 

scalability, but it also introduces some disadvantages, in particular an increased complexity 

in security management that necessitates the development of innovative methodologies.  

The goal of ensuring a correct network isolation between containers in the continuum serves 

a dual purpose. First, it is imperative to protect the hosting cluster against potential harm 

resulting from guest applications. Second, it is equally important to protect guest 

applications against any potential stealing of data or code or unauthorized interference from 

the host. Another important need is to allow application owners to specify precisely what 

interactions their applications may have with their environments and what the hosting 

environments are willing to allow. Based on such specifications, communications according 

to the general least privilege principle are to be restricted. Furthermore, the concept of 

extended virtual cluster adopted by FLUIDOS dictates the need for novel solutions with 

respect to the current state of the art. The conventional notion of a physical boundary that 

must be protected has evolved into a dynamic and continuously shifting virtual boundary, 

which spans across various domains and evolves over time.  

To achieve these objectives, the solution proposed for FLUIDOS is a security orchestrator to 

automate the configuration of isolation primitives, e.g., Kubernetes Network Policies, across 

the entire orchestrated domain. The solution is policy-driven, because desired and 

prohibited network connections are expressed through user-defined intents. In greater 

detail, the proposed solution allows the formulation and enforcement of finely grained 

isolation policies to ease the implementation of common security patterns such as zero trust 

and least privilege. The whole process revolves around different sets of intents defined by 

both hosting and hosted tenants which are exchanged during the peering process. 

Therefore, a harmonization is performed between the configuration of both tenants taking 

part in the peering to intelligently select the resulting set of approved intents, which are later 

translated and enforced in the appropriate locations. This document contains a study of the 

problem and the definition of the semantic of the intents, with an initial proposal for the 

refinement workflow. The actual implementation of the distinct sets of intents is still a work in 

progress, even if different enforcement solutions have already been explored, such as 

Kubernetes Network Policies and the security extension of Liqo implemented in FLUIDOS, 

which is presented in section 3.3.2. 
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3.2.1.1 Network connections in the continuum 

The border protection problem must be declined into the different communications that may 

occur in a cloud environment, and specifically into the different use cases foreseen in 

FLUIDOS. The network fabric envisioned in liquid computing could span across different 

clusters, which requires to protect not only the perimeter of single pods or clusters, but also 

the one of virtual clusters. First, it should be possible for the user to define connectivity 

policies for pods in the same virtual cluster but distributed over many physical clusters. This 

is the deployment scenario of the “elastic cluster”, which could be adopted for example 

during a cloud migration or to absorb load spiked, i.e., cloud bursting, during which some 

pods are moved to a remote cluster due to the physical limitations of the one on premise. 

Second, it should be possible for the user to define connectivity policies for pods belonging 

to different virtual clusters but sharing the same physical one. This situation can be motivated 

by the common principle of data gravity, requiring that the processing is moved where the 

data is located for improved latency, or also to be compliant with regulation policies like 

GDPR, which requires that data cannot be moved outside a specific geographical location.  

Considering these specific interactions, along with the canonical ones, we have identified 

different types of communications interesting for enforcing network isolation and these are 

represented in Fig. 3.5, where each type of communication is presented in a different picture 

including two thick-bordered boxes representing two different physical clusters (one blue, 

owned by one tenant and one yellow, owned by another tenant), pods are represented by 

filled circles, and a virtual cluster owned by the blue tenant is represented by a region with 

blue background that spans the blue physical cluster (the home portion of the virtual cluster) 

and the yellow cluster (the offloaded portion of the virtual cluster). This virtual cluster includes 

3 pods hosted in the home physical cluster of the blue tenant and other 2 pods offloaded to 

the yellow hosting physical cluster. Another pod, filled with yellow color, represents a pod 

FIGURE 3.5: COMMUNICATION TYPES WITHIN FLUIDOS 
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that is in the yellow cluster but not part of the blue virtual cluster. The different 

communication types are represented by arrows. They differ for being intra-cluster or inter-

cluster, and intra-virtual cluster or inter-virtual cluster.  

Regarding the classified types of communications, type 1A corresponds to the base scenario 

for the case of controlling connectivity for pods in the same virtual cluster, involving pods 

within a single physical cluster which is owned by the same tenant that owns the physical 

cluster. This scenario can be addressed by state-of-the-art solutions based on Kubernetes 

Network Policies, a network isolation primitive designed to implement network isolation 

across pods within a cluster.  

Communications of type 1B have similar characteristics with type 1A, targeting again the case 

of controlling connectivity for pods in the same virtual cluster, but introduce additional 

complexity, as the isolation primitives must be enforced on the remote physical cluster, which 

has control of the configuration of the remote physical infrastructure. This characteristic 

demands for a distributed approach to the orchestration of security intents, with a user 

owning the virtual cluster and another user owning the hosting physical cluster responsible 

for the enforcement of such intents.  

Transitioning to the analysis of communication types 3A/B, which are considered jointly due 

to their similarities, they correspond to use cases where it is necessary to control 

communications involving pods belonging to different virtual clusters but sharing the same 

physical one or communications between offloaded pods and the internet. These cases can 

be handled in a manner not vastly different from types 1A/B. Specifically, from a technical 

point of view, both involve communications that involve a single physical cluster, where pods 

of a tenant are offloaded. These communications can be controlled, according to best 

practices, using Kubernetes Network Policy. However, the primary difference lies in the multi-

tenant nature of types 3A/B, where different tenants define distinct isolation requirements 

that may potentially be in conflict. For this reason, a harmonization is necessary to orchestrate 

the different security intents, defined by different tenants, thereby ensuring a conflict free 

implementation. These kinds of communications are considered also by the solution of 

protected borders presented in section 3.3.2, which could be a base for implementing their 

enforcement.  

Type 2 communications are another scenario referring to the case of controlling connectivity 

for pods in the same virtual cluster, but in the more complex situation when the 

communication is between pods hosted in different physical clusters. To operate traffic 

control for inter-cluster communications, the conventional approach is to implement a 

service mesh architecture, allowing the creation and denial of selected connections. 

However, being FLUIDOS designed to be deployed on edge devices with limited 

computation resources, the overhead introduced by a service mesh may be unacceptable. 

For this reason, we need to find a solution to intra-cluster traffic control which has a reduced 

footprint in terms of used resources, and which is more integrated into the FLUIDOS 
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architecture. In this sense, the solution presented in the following section 3.3.2 can be used 

as a base for the enforcement of this type of communication too.  

Finally, communications of type 4 could be also considered, but we consider them of limited 

relevance to FLUIDOS, based on the typical use cases that have been analysed.  

3.2.1.2 Intents 

For what concerns the formulation of the security intents, users may define multiple sets of 

them, each tailored to achieve different objectives. We foresee three different sets of user’s 

intents, plus a fourth one used for setup (e.g., to allow communications that are required by 

the FLUIDOS framework itself). When participating in FLUIDOS, users can play the roles of 

consumers (i.e., when they use resources of some remote cluster) and providers (i.e., when 

they supply resources to other clusters) in various peering scenarios. The “consumer” role 

entails the enforcement of network isolation policies for services offloaded to remote 

clusters, while the “provider” role grants the authority to impose restrictions on connections 

involving resources within their domain. For instance, a provider may only authorize access 

to selected services or force mandatory monitoring connections for all offloaded containers.   

Depending on the role, a user could define different sets of intents with different goals. When 

users assume the consumer role, their primary network security objectives are safeguarding 

communications within their local cluster and protecting communications among resources 

offloaded to remote clusters. These objectives correspond to Private and Request intents, 

respectively. Conversely, whenever users assume the provider role, their primary network 

security goal is to limit communications between the hosted resources and local ones. For 

this reason, users may define a third set of intents, named Authorization intents. In this case, 

the hosting cluster can enforce its authority only to the communications crossing the border 

of the hosted virtual cluster, involving its own services or the usage of its connection towards 

the external network (i.e., the Internet). Conversely, no limitation is applied to 

communications happening within the border of the offloaded virtual cluster, between 

hosted resources. Additionally, a fourth set, automatically populated and enforced for every 

cluster participating in FLUIDOS, is the set of Setup intents. They are used to facilitate the 

configuration tasks, such as enabling the traffic necessary to maintain the network fabric 

created by the FLUIDOS architecture. Table 3.3 summarizes these intent types. 

TABLE 3.3: INTENT TYPES IN FLUIDOS 

Intent types Description 

PRIVATE INTENTS 

These intents are related to 
communications happening within the 
local cluster (source, destination, or both, 
are entities of the original cluster). 
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REQUEST 
INTENTS 

These intents are related to 
communications happening within the 
offloaded cluster (source, destination, 
or both, are offloaded entities). 

AUTHORIZATION 
INTENTS 

These intents are related to 
communications from resources 
hosted in the cluster towards the 
external of their virtual cluster (e.g., 
deny internet access to all hosted 
pods, permit only traffic to some local 
services, maintain monitoring access to all hosted pods). 

SETUP INTENTS 
These intents are related to communications required by the 
FLUIDOS framework. These intents are used for configuration 
purposes. 

The definition of intents to control type 2 communications is left for future work for the 

moment. It will be added in a subsequent step of the work. 

Regarding the format employed for defining intents, it should have a similar degree of 

expressiveness as the one achieved with selectors in Kubernetes Network Policy, so as to 

allow the specification of the information needed to select specific traffic. The envisioned 

structure is the following one:  

“from SRC to DST, protocol [: port [- endPort]]” 

● SRC and DST can be either a pod or a group of pods with the same label, or an 

address or a group of addresses defined through CIDR (at most one could be a CIDR 

address). 

● protocol can be any transport protocol (TCP, UDP, SCTP, etc.) or “ALL”. 

● port can be a port, or a range of ports. 

The information about the namespace could be added in the SRC and DST fields when 

specifying the selected entities. Note that, being the implementation based on Kubernetes 

Network Policy, allowing a unidirectional communication “from service A to service B” means 

that service A can start a communication with B, and B can send responses back over this 

connection, but service B cannot start a communication with A.  

The Request, Private, and Setup intents can be expressed only in whitelisting, so as to be 

compliant with the default behaviour of Kubernetes Network policies, which allows to define 

the set of permitted communications and all the other ones are consequently blocked. 

Instead, The Authorization intents allow for more flexibility because they are used to 

authorize or deny the requested intents and they do not have a direct association with 

Network Policies. For this reason, Authorization intents can be expressed freely by the user 
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according to the situation: the user could choose to express all allowed communications and 

to block the others (i.e., whitelisting), or to express all the denied communications and to 

allow the remaining ones (i.e., blacklisting). 

3.2.1.3 Discordances 

For the refinement of the defined intents, the first step is the analysis of the potential 

discordances that may arise when resource sharing occurs, and how these could be resolved 

with an adequate harmonization algorithm. In this context, a discordance arises when an 

intent defined by one user is not authorized or coherent with intents defined by another user 

with whom peering is requested.  

These discordances can be classified in two main categories: first, the case in which a 

requested communication is not authorized by the hosting cluster, and second, the case in 

which the hosted user requests an interaction with the local resources of the hosting cluster 

which is not coherent with the isolation intents defined by the owner of those resources. 

These are represented in the following Fig. 3.6. 

 For the first case, a user performing the offloading is requesting that his offloaded entity A 

can contact a malicious website, but the authorization intents defined by the hosting user 

deny all connections to the internet for all offloaded pods, thus causing a discordance. 

Second, the consumer requests that the same offloaded entity A can contact entity B, which 

is part of the hosting cluster. However, the hosting user has not defined an intent allowing B 

to be contacted by A, thus resulting in another discordance. 

3.2.1.4 Workflow 

An algorithm has been designed to perform the harmonization between different sets of 

intents established by different users engaged in peering processes. This allows an 

intelligent resolution of the possible discordances between sets of intents, which are 

subsequently refined and enforced at the appropriate clusters. The general principle 

adopted in the harmonization algorithms is that the hosting cluster has the decision power: 

it chooses which request intents can or cannot be enforced while possibly forcing some new 

ones. The idea is that the one which is hosted must submit to the rules of the host.  

The workflow envisioned for this orchestration of network isolation intents is that, during the 

peering process, the Privacy and Security Managers (PSM) of the offloading cluster and the 

FIGURE 3.6: EXAMPLES OF DISCORDANCES 
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hosting cluster interact exchanging the sets of intents and performing the harmonization, 

translation, and enforcement. The core process is the harmonization, which produces a new 

set of “Harmonized intents” that will be used in the peering process as an additional 

parameter for decisions. The peering strategy will choose which action should be taken 

according to the approved, forced, or denied intents (along with other parameters such as 

offered resources, latency, geographical position, etc.). 

Fig. 3.7 graphically represents the workflow employed in the situation of a peering request 

performed by the offloading cluster C1, owned by user 1, towards the hosting cluster C2, 

owned by user 2.  

This process starts with (1) the PSM of the requesting cluster which retrieves the Setup intent, 

the information regarding the offloading (e.g., kind of resources, labels), and the Request 

and Private intents defined by the user requesting to offload some resources. The set of 

Private intents is relative to communications happening within the local cluster, thus (2-3) 

they are directly translated and enforced on the Kubernetes API server of the local cluster 

because no harmonization is needed. The Setup intents defined in cluster C1 follow the same 

path. On the other hand, (4) the Request intents and the offloading information are sent to 

the PSM of the hosting cluster C2 which performs the harmonization process. The 

harmonization module (5) processes the received Request intents along with the 

Authorization and Private intents defined by the hosting user. The goal is to detect any 

discordance and possibly correct them applying an adequate resolution strategy. The 

outcome of this process is the set of Harmonized intents (6) which is sent back to the PSM of 

the offloading cluster, which decides the action to take according to the adopted peering 

strategy. Finally (7), if the set of Harmonized intents are approved by the PSM of C1, these 

are enforced on the API server of the hosting cluster C2 being the one responsible for doing 

so. Notably, the complexity of the translation depends on the selected CNI, for example if 

there is no support from the CNI, intents that are global to the cluster cannot be simply 

translated “one-to-one” but need to be enriched with additional information gathered 

Fig.  SEQ Figure \* ARABIC 3: WORKFLOW DIAGRAM FOR THE ORCHESTRATION OF THE SECURITY INTENTS 

FIGURE 3.7: WORKFLOW DURING PEERING REQUEST 
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through the coordination of the different modules of FLUIDOS. Optimization has not yet 

been considered and its analysis is left for future work.  

Example 

We introduced an example to convey more clearly the proposed solution for FLUIDOS. The 

scenario includes two different clusters, each composed of multiple applications, some of 

which are offloaded to the other cluster. The need is to secure their interactions, which means 

to allow only some communications while others must be blocked. This situation is depicted 

in Fig. 3.8, where the arrows represent the allowed communications, and all the others must 

be blocked.  

The scenario presented is a simplified version of an online store built upon a microservices 

architecture. Within this setup, cluster C1 hosts the primary online store application, which 

collaborates with various other services to deliver a range of functionalities, mainly focusing 

on customer support and processing of incoming orders. On the other side, cluster C2 is 

designated to host applications that support the logistic service, a component that we can 

presume is outsourced to an external third party or another administrative domain within the 

same company. The concept underlying this configuration is to offload some applications to 

the logistic section, enabling them to access the provided data, such as the catalog and 

product availability information. Within this system, the “online store” is the only application 

being reachable from the internet, while the “bank payments” application is the only one 

allowed to connect with the internet, primarily for communication with the payment's 

network. Focusing on the interactions between applications within the physical clusters, we 

observe that the "online store" initiates email communications with the "help desk" for 

customer support. Additionally, the "order placement" application possesses the capability 

to establish connections with both the "bank payment" application for payment processing 

and the "product catalog" one to verify product availability, with the latter being responsible 

for the logistics aspect of supply management. It is important to note that while certain 

communications are evidently necessary, such as those between "product catalog" and 

"database" or between "online store" and "order placement", some interactions have not 

FIGURE 3.8: EXAMPLE OF WORKFLOW DURING PEERING REQUEST 
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been included in this example to maintain brevity of the example, even if this omission results 

in a less comprehensive representation of a real-world scenario. 

The desired communications are expressed through the different sets of intents. In this 

situation, for cluster C1, which is offloading its resources to C2, the defined sets are the 

Private and Request intents, being those needed in the offloading case. Whereas, for cluster 

C2 we have the sets of Private and Authorization intents, being the sets needed in the hosting 

case. These are detailed in Table 3.4. 

TABLE 3.4: INTENTS OF C1 (OFFLOADING) VS C2 (HOSTING) 

Intents Cluster 1 (offloading) Intents Cluster 2 (hosting) 
Private Private 

● from “app:online_store” to “app:help_desk”, 

TCP:110 

● from I1 to “app:online_store”, TCP:80 

● from any pod to “app:product_catalog”, 

TCP:80 

Request Authorization (whitelisting) 

● from “app:order_placement” to 

“app:bank_payment”, ALL 

● from “app:order_placement” to 

“app:product_catalog”, TCP:80 

● from “app:bank_payment” to I2, ALL 

Reachability: 

● from any offloaded pods to 

“app:product_catalog”, TCP:80 

As said in the workflow section, the private intents are processed inside the PSM of the local 

cluster C1. The operations performed for these can be, for example, just a translation (i.e., 

mapping an intent to Kubernetes Network Policies) and a subsequent enforcement (i.e., 

creating the Network Policy objects through the API server). The harmonization is not  

needed in this case. Taking as example the first private intent of C1, the process is depicted 

in Fig. 3.9. 

Fig.  SEQ Figure \* ARABIC 5: PRIVATE INTENTS WORKFLOW 

FIGURE 3.9: WORKFLOW OF THE FIRST PRIVATE INTENT OF C1 
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Instead, for what concerns the processing of the Request intents defined for C1, they are 

related to the communications happening in the offloaded cluster and are sent to the PSM 

of the remote cluster C2, where the preliminary operation which is performed is the 

harmonization. Translation and enforcement are performed too, but on the hosting cluster, 

because it is the one capable of implementing the proper network isolation. The objective 

of the harmonization is to detect any discordance and correct them. These could be: 

1. discordances with the Authorization intents (of the hosting cluster); 

2. discordances with the Private intents (of the hosting cluster). 

In this specific situation, considering the set of Request intents, the first intent describes a 

communication internal to the virtual cluster, and for this reason no authorization is needed. 

For the remaining two, also considering the Authorization intents defined in C2, the second 

Request intent is allowed whereas the third one is denied not being an authorized 

communication. Considering the discordances with the Private intents of the hosting cluster 

C2, this requires that all pods in the cluster (also considering the offloaded ones) must allow 

a connection with “app:product_catalog”. This results in an additional Harmonized intent 

added to the Request set of C1 to be compliant with the request. In the end, the set of 

harmonized intent includes the first and second Request intents (the third one is not 

authorized) and an additional harmonized intent to be coherent with the Private intents of 

the hosting cluster. 

TABLE 3.5: EXAMPLE SET OF HARMONIZED INTENTS 

Harmonized Intents 

[Request Intent 1] from “app:order_placement” to “app:bank_payment”, ALL 

[Request Intent 2] from “app:order_placement” to “app:product_catalog”, TCP:80 

[Harmonized Intent] from “app:bank_payment” to “app:product_catalog”, TCP:80 

The PSM of C1 could then decide to either accept the Harmonized set of intents or to 

interrupt the peering process. If it decides to continue, they will be translated, e.g., to 

Kubernetes Network Policies and enforced on the API server of C2 or they could be 

implemented by using the solution proposed in section 3.3.2. 

3.2.2 Liqo extension for border protection  

The default mode of Liqo establishes full pod-to-pod connectivity between the pods of the 

two clusters involved in the peering. Given that this mode cannot provide any security 

perimeter to workloads running in a different cluster, we have identified some minimal 

features that have been pushed into the Liqo mainstream code [15], which can enable further 

experimentations in the FLUIDOS project. 
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The first implementation of security in Liqo includes the segregation between intra-cluster 

and inter-cluster traffic. In this scenario, full pod-to-pod connectivity is enabled only within 

physical clusters. Regarding inter-cluster traffic, the offloading cluster can contact only its 

offloaded pods. However, the cluster hosting the offloaded pods can contact only the 

services offloaded on it, and not contact the offloaded pods directly. Figure 3.10 illustrates 

an example of a configuration with the related traffic matrix. The yellow highlights indicate 

the differences from the default mode of Liqo. 

 

FIGURE 3.10: EXAMPLE OF A CONFIGURATION WITH THE RELATED TRAFFIC MATRIX 

The second implementation, still under development, focuses on border protection, starting 

from the following assumption: in a physical cluster, the borders should be protected from 

entities outside those borders, similarly in the case of a virtual cluster that spans multiple 

clusters and (possibly) multiple domains. In this scenario, as shown in case 3A in the first 

picture, the intra-cluster traffic should be blocked and allowed only through authorized 

holes. This means that the offloading cluster permits communication between its pods and 

the pods scheduled on the hosting cluster only if necessary and not by default, to secure its 

borders. 

Both implementations are based on Kubernetes-native data structures (i.e., Custom 

Resource Definitions, CRD), which facilitates future activities and extensions within the Liqo 

project. 
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3.2.3 Minimizing Docker Container Privileges for Node Security Policy 

Enforcement  

Over the past years, Docker containers have become a popular choice for developing 

applications in the cloud and at the edge due to their increased flexibility and lower costs. 

Unlike virtual machines (VMs), where each has its own operating system (OS), all containers 

on a host share the same underlying OS kernel allowing for faster boot times and greater 

efficiency. However, this comes at the expense of providing weaker isolation compared to 

that of VMs. Adversaries who control a container on a third-party server can exploit 

vulnerabilities in the kernel in order to compromise co-resident containers or, even worse, 

gain elevated privileges on the host. An example to illustrate the consequences of this design 

decision is the weakness found in the waitid syscall, which allowed adversaries to execute a 

privilege escalation attack in order to escape the container and gain access to the host [16]. 

This is not an isolated case since it is likely that there are many more kernel vulnerabilities to 

be discovered. Kernels are very complex components with a large code base that is regularly 

updated and extended, making them prone to vulnerabilities. 

One of the main enablers of these attacks is that current containers typically run with more 

privileges than they need, violating the well-known principle of least privilege. By default, 

Docker containers can invoke any of the 300+ supported by the Linux kernel (except for 44 

that are blocked) and are granted 14 capabilities (out of the 38 available) [17]. Importantly, 

even if the container does not utilize some of these syscalls or capabilities, all these privileges 

are available within the container and can therefore be abused by an adversary who gains 

access to the container. This has serious security implications because every syscall or 

capability allowed in a container becomes an entry point to the kernel, which increases the 

chances of adversaries finding vulnerabilities in the kernel [18]. 

According to the NIST container security guidelines, reducing the attack surface of the host 

OS kernel is a promising way to alleviate the fragile isolation containers provide [19]. There 

are several Linux kernel mechanisms, such as Seccomp and Capabilities, that are commonly 

used by cloud providers to mitigate attacks against the host OS kernel originating from 

malicious containers. However, these mechanisms do not provide any means for 

automatically discovering which are the privileges each container requires. Currently, this is 

a manual and time-consuming effort that typically leads to overestimating or 

underestimating the privileges required by containers. 

To automate this process several papers have proposed solutions based on the usage of 

dynamic or static analysis (or a combination of the two). Dynamic analysis-based solutions 

require running the container and capturing the system events it invokes, while static analysis-

based solutions extract this information by inspecting the container’s source code or its 

binary. Unfortunately, both techniques have limitations. Standard dynamic analysis solutions 

are unable to capture syscalls that occur in container execution paths that are not observed 

in the container profiling phase. In contrast, the problem with static analysis solutions is that 
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they do not take into account the container runtime and thus include all possible syscalls that 

can occur according to the container’s source code or binary. Put differently, dynamic 

analysis-based solutions tend to underestimate the syscalls required by the container (which 

can lead to execution errors), while static analysis-based solutions typically overestimate 

privileges (which can lead to a larger attack surface for the host OS kernel). Given that static 

analysis-based solutions do not significantly reduce the attack surface and require access to 

the source code or binary of the container (which in some cases may not be available), we 

focus on dynamic analysis solutions and propose a way to mitigate their limitations in terms 

of coverage. 

In this section, we propose BeaCon, a novel tool that enables cloud providers to 

automatically discover the syscalls and capabilities invoked by applications running inside 

containers. The goal of BeaCon is to create tighter policies than those generated when using 

static analysis techniques, while at the same time mitigating the coverage problems of 

existing dynamic analysis-based solutions. To achieve this, BeaCon relies on dynamic 

analysis, but unlike previous solutions based on dynamic analysis, it takes into account the 

possible environments that containers may be subjected to in practice while profiling them. 

This way, BeaCon is able to observe system events that would otherwise not be visible in the 

container profiling phase and that could later cause the container to fail. In addition, we 

design BeaCon such that application owners can adjust the security level of policies based 

on the desired level of security they wish to have in their applications. 

3.2.3.1 Threat Model 

For the threat Model, we consider adversaries who have gained access to a container. The 

way the adversary achieves this is beyond the scope of this document, but a serious 

possibility is that the adversary does so by exploiting a vulnerability in the container 

application. Recent studies have shown that most container images in public repositories 

(e.g Docker Hub), many of which are very popular and have been downloaded millions of 

times, contain serious vulnerabilities that take a long time to be fixed [22, 23]. After 

compromising the container, the adversary’s goal is to escape the container in order to 

compromise other (co-resident) containers or gain elevated privileges on the host. The key 

to carrying out this attack successfully is for the adversary to find a vulnerability in the kernel 

[24], and to do so, the adversary can abuse any of the privileges granted to the container. 

From this observation, it becomes evident that the wider the container-kernel interface (i.e., 

the more syscalls are allowed within the container), the larger the attack surface and hence 

the more likely it is for the adversary to find a vulnerability in the kernel. 

Assumptions 

We assume that containers are run without root privileges and are properly isolated using 

standard Docker security mechanisms (e.g., cgroups and namespaces). These are standard 

practices in any container-based environment. The only assumption we make is that 
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container images themselves are not compromised when pulling from the image repository. 

It is reasonable because cloud providers typically utilize security tools to detect vulnerabilities 

in container images before running them in their platforms [25]. This assumption guarantees 

containers during the profiling phase are not compromised, thus they do not request more 

privileges than those they need. 

3.2.3.2 BeaCon 

The goal of BeaCon is to provide a method for cloud providers to automatically identify the 

system calls and capabilities that should be allowed in the seccomp and capabilities profiles 

they create for their containers. BeaCon comprises three main modules: (1) the Emulation 

Agent (2) the Monitoring Agent, and the (3) Decision Agent. 

1 Emulation agent: The Emulation Agent is responsible for generating a set of 

environments that are likely to be exposed to containers, and running containerized 

applications with each environment (one at a time). BeaCon takes a proactive approach 

by emulating execution environments for containers. This emulation involves accurately 

replicating the external factors that influence the container’s behaviour. In particular, 

BeaCon places a strong emphasis on two external factors: (i) Docker command options 

provided to containers during initialization and (ii) workloads applied to containers at 

runtime. The decision to prioritize Docker options and workloads in the emulation 

process is rooted in the understanding that these factors can strongly impact the way 

containers are executed. 

2 Monitoring agent: The monitoring agent runs the container multiple times while 

applying each of the environments generated by the Emulation Agent one at a time. For 

each environment, the monitoring agent collects the syscalls invoked and the 

capabilities requested. 

3 Decision agent: Beacon proposes the use of a security and functionality score in the 

generation of policies. These scores allow application owners to quantitatively express 

their desired security and functionality goals. The security score, denoted as 𝑆𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 , 

and the functionality score, denoted as 𝑆𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 , of policy 𝑝𝑐 for container 𝑐 are 

calculated using Equation (1) and (2), respectively. In these equations, 𝐶𝑉𝑆𝑆(𝑒) 

represents the highest CVSS value among the CVEs associated with the system event 

(system call or capability) 𝑒, and 𝐸𝑐(𝑒𝑛𝑣) denotes the set of system events triggered when 

the external environment 𝑒𝑛𝑣 is applied to the container 𝑐. 

  Equation (1) 

  Equation (2) 

  

 
At first glance, BeaCon could be designed to run entirely online. However, the Beacon 
profiling phase requires running the container multiple times, each time with a different 
environment, and collecting all system events sent over a few minutes. Consider, for 
example, a simple scenario where cloud providers want to consider 10 different 
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environments, capturing for each environment all system events sent for say 5 minutes. (Note 
that, in practice, the monitoring time may be longer and that the number of containers to be 
profiled simultaneously may be much higher). The problem with this approach is that the 
time required for the container profiling phase can break quick-start containers, dwarfing the 
benefits of the container environment. To avoid this problem, BeaCon uses a two-phase 
analysis, which includes an offline phase conducted before containers are run, and an online 
phase where container profiles are created and used in production environments. 
 
In the offline phase, BeaCon exposes containers to both generated and user-provided 
environments, and collects and stores all the information in order to speed up policy 
decision-making in the online phase. However, a potential problem with this approach is that 
all possible combinations of containers with different environments would have to be 
considered, which would have significant computational and storage costs. We show that it 
is possible to achieve this while considerably reducing the number of times the container has 
to be monitored and the information that has to be saved about it. 

3.2.3.3 Evaluation 

We evaluate the effectiveness of BeaCon in generating policies that are accurate, secure and 

lightweight. For this purpose, we rely on a dissimilarity score 𝐷 that resembles the widely 

known Jaccard Similarity [26] and is defined in Equation (3). Its goal is to measure the 

difference between multiple sets 𝑆𝑖 each containing a sequence of system events (i.e., 

syscalls or capabilities) collected from the 𝑖-th observation. The dissimilarity score (D) can 

take any real value between 0 to 1, where 1 means that there are no common elements in 

the sets and 0 represents that they are identical. 

 Equation (3) 

 

Effect of different options passed to containers 

We started by investigating whether the Docker command options are likely to influence the 

privileges the container needs to run. To that end, we executed each of the container images 

first without any option then with nine popular Docker runtime options one at a time, 

collecting the system events sent by the containers each time. Subsequently, for each 

container image, we computed the dissimilarity score considering the sets of system events 

observed when applying each of the options separately as follows: 𝐷𝑜𝑝𝑡𝑖𝑜𝑛𝑠 = 𝐷 (𝑆𝑛𝑜_𝑜𝑝𝑡𝑖𝑜𝑛, 

𝑆𝑜𝑝𝑡1 ..., 𝑆𝑜𝑝𝑡9 ). Figure 3.11 illustrates the impact of different options on the dissimilarity of 

system events in 161 containers. A high dissimilarity score indicates the generation of more 

distinct system events. Our results show that at least 5% distinct system calls in 53% of the 

containers (85 images). On the other hand, we saw that 6% of the containers (10 images) 

required 20% more capabilities when certain Docker options were used. 
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FIGURE 3.11: CUMULATIVE DISTRIBUTION OF A NUMBER OF SYSCALLS, WHEN APPLYING DIFFERENT OPTIONS 

Effect of different workloads passed to containers 
 
Afterwards, we ran a similar experiment, but this time to quantify the effect of different 
workloads on system events generated by containers during their execution. For this 
experiment, we selected 71 official images that can be used with YCSB. As before, we first 
run the container and collect the system events it requests when no workload is applied and 
then repeat the same process while applying 8 different workloads one at a time. Finally, we 
calculate the dissimilarity score between the different sets of system events observed for a 
given container and the environments applied to it, i.e. 𝐷𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝐷(𝑆𝑛𝑜_𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 , 𝑆𝑊𝑎 , 

𝑆𝑊𝑏, 𝑆𝑊𝑐 , 𝑆𝑊𝑑 ). Figure 3.12 shows the dissimilarity score of system events when different 
workloads are applied. Our results indicate that 39% of containers (28 out of 71 images) 
exhibit at least 5% of distinct syscalls under varying workloads. Moreover, for 10% of 
containers (7 images), we observed 20% of distinct syscalls. In terms of capabilities, we 
observed that 4% of containers (3 images) required an additional 10% of capabilities. 

Independence of container’s behavior under multiple environments 

BeaCon requires executing and capturing the system calls invoked by the container while 

potentially applying it to a significant number of environments. This could create a large 

FIGURE 3.12: CUMULATIVE DISTRIBUTION OF A NUMBER OF SYSCALLS, 

WHEN APPLYING DIFFERENT WORKLOADS INTO CONTAINER 
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overhead, both in terms of the number of computations to perform and the information to 

store. Next, we investigate if once we have executed the container with different 

environments (one at a time) it is possible to merge the results obtained with several 

environments to know what the behaviour of the container would be if several of those 

environments were applied at the same time. This way cloud providers could achieve the 

desired result without needing to run the container for all possible combinations of 

environments. 

To study the feasibility of this optimization technique, we select two options (i.e. -it and --
publish-all) and two workloads that perform read and update, respectively. We then take all 
the combinations between them to create six more complex environments that include only 
options, only workloads as well as options and workloads simultaneously. At this point, we 
proceeded in the same way for all cases. We collect the system events requested by the 
container first by applying each of the environments separately, and then by applying them 
simultaneously. As a final step, for all containers and their sets of system events, we compute 
the dissimilarity score as follows: 𝐷𝑖𝑛𝑑 = 𝐷 (𝑆𝑒𝑛𝑣𝑖 ∪ 𝑆𝑒𝑛𝑣𝑗 , 𝑆𝑒𝑛𝑣𝑖 𝑗 ). Figure 3.13 shows that 
up to 62.5 % of container images-environment pair have an identical set. Moreover, the 
largest value of syscall dissimilarity is 0.02, meaning that only 2% of syscalls are the difference 
between the two sets. Meanwhile, there is no difference between the two sets independent 
of the type of container images and given environment regarding capabilities. 

 

3.2.3.4 Conclusion 

This work presents the design and implementation of a novel approach for the automated 
generation of intention awareness policies suitable for Docker containers. It is based on 
running containers and capturing the system events they request using dynamic analysis 
coupled with realistic environments. BeaCon is lightweight, non-intrusive, and fully 
compatible with any type of container image. Our security use-cases demonstrate that 
BeaCon can efficiently reduce the attack surface, thus preventing attacks from adversaries 
who exploit excessively granted privileges. Additionally, our evaluation results indicate that 
it is crucial to consider the environments under which containers are executed in order to 
assign only the minimum privileges required to containers. 

FIGURE 3.13 :CUMULATIVE DISTRIBUTION OF A NUMBER OF SYSCALLS, ONE SET BY 

MERGING TWO SETS FROM SINGLE ENVIRONMENTS, 
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3.3   WORKLOAD CONFIDENTIALITY 

Workload confidentiality is a very important target when securing FLUIDOS nodes from 

malicious users as well as to protect users from FLUIDOS providers. 

In this context, we present a novel attack against confidential containers, where honest-but-

curious FLUIDOS providers, offering users the option to run their workloads within a Trusted 

Execution Environment (TEE) to enhance security and privacy, may potentially identify the 

application within the TEE by exploiting information leakage at the container-kernel interface 

in the form of syscalls. Furthermore, we demonstrate the practical feasibility of this attack and 

introduce a countermeasure to mitigate its impact. 

3.3.1 A new side channel attack against confidential computing 

Until recently, cloud providers have relied on a security model that focuses on keeping their 
customers’ applications encrypted at rest and in transit, but not while in use. Unfortunately, 
this security model falls short for many of the applications running in the cloud today. This is 
because every time the code and data of an application are decrypted and moved in clear-
text from secondary storage to system memory for use, they are at serious risk of being 
accessed or manipulated by vulnerable or malicious software at the system level (e.g., the 
operating system, hypervisor or the BIOS), or by a malicious cloud operator with 
administrator or physical access to the cloud provider’s infrastructure. In response to this 
threat, confidential computing has emerged to protect the customers’ applications not only 
at rest and in transit, but also while in use. Since then, major cloud providers, such as Amazon 
[28], Google [29] and Microsoft [30], have begun to include confidential computing as part 
of their infrastructure offerings, in order to provide greater security and privacy guarantees 
to their customers. 

At the core of trusted computing are Trusted Execution Environments (TEEs), which allow 
storing data and executing arbitrary code in a secure memory area (also known as enclave) 
on an untrusted server. Importantly, TEEs allow to significantly reduce the Trusted 
Computing Base (TCB), and provide strong protection even against attacks from adversaries 
who have root privileges on the server. Leveraging TEEs, confidential computing allows 
customers to run their applications inside containers as usual, but without cloud providers 
(or any compromised or malicious software in their servers) being able to infer any 
information about the currently running applications. Indeed, failure to deliver on this 
promise would jeopardize the widespread adoption of confidential computing among 
software developers and enterprises. 
In our work, we uncover a new side-channel attack targeting confidential computing that 
enables adversaries to discover sensitive information about an application running inside a 
container backed by a TEE, by leveraging its interactions with the “outside world". As shown 
in Figure 3.14, containers can interact with the “outside world” in two ways: (i) over the 
network with other containers and cloud services, and, (ii) with the host OS kernel. In the 
former case, the information exchanged is usually encrypted. While traffic analysis attacks 
that exploit any information that is preserved when traffic is encrypted are possible (e.g., 
using the packet length or the number of packets exchanged in each direction), these attacks 
have already been studied both for TEEs (e.g., [31]), and other domains (e.g., [32]). Yet, the 
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container-kernel interface – which is particularly relevant in the context of containers due to 
the fact that it is a shared resource – remains totally unexplored. Our work targets this 
interface and is motivated by the fact that system calls sent via this interface could constitute 
an application fingerprint. Such knowledge could then be used by adversaries to launch 
more effective, efficient and stealthy attacks. Moreover, it could allow adversaries to detect 
co-location, an important prerequisite to mount a wide range of attacks including Spectre 
[33] or Meltdown [34]. 

In this work, we design a system to detect, quantify and reduce information leakage arising 
at the container-kernel interface in the context of confidential computing. To begin with, we 
propose a novel fingerprinting attack that allows adversaries to infer sensitive information 
about containerised applications running inside a TEE solely by observing the system calls 
they invoke. A key enabler for this new class of attack is that the system calls invoked by 
containerised applications running inside the TEE can be captured accurately from outside 
the container without affecting the container’s performance, thus, leaving no trace from the 
adversary. We then go one step further and analyse the feasibility of these attacks from the 
perspective of a “weak adversary" who can only monitor the container for the first 2 minutes 
from the time the container is started (i.e., its booting time). Motivated by our findings, we 
introduce a countermeasure that aims to considerably reduce information leakage in the 
container-kernel interface. Our devised solution aligns with the tenets of differential privacy, 
and strategically injects a small number of (fake) syscalls in order to achieve greater 
uniformity in the containers’ syscall patterns. 

3.3.1.1 Motivation 

Our work builds on the key observation that many TEEs, such as Intel SGX, require 

applications to leave the enclave to handle the system calls they invoke [35-37]. Through 

experiments, we confirmed, in line with what is mentioned in the SCONE paper [36], that 

when SCONE is used all syscalls are handled outside the enclave (and are thus visible to the 

adversary). Without loss of generality, we decided to run the Docker images without SCONE. 

This is due to two reasons. Firstly, the freely available version of SCONE does not support 

FIGURE 3.14: SYSTEM CALL PATTERNS FOR TWO CONTAINERS HOSTING TWO DISTINCT APPLICATIONS. EACH 

ARROW REPRESENTS A SYSCALL, AND ARROWS OF THE SAME COLOUR REFLECT SYSCALLS OF A GIVEN TYPE (E.G., 

THE WRITE SYSCALL) 
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some types of Docker images. And secondly, but not less important, we wanted to quantify 

the information leakage that comes directly from the application itself. 

As mentioned above, with confidential computing it should not be possible for adversaries 

to obtain any information whatsoever about the applications running inside confidential 

containers. This includes information such as what application is running within the TEE (e.g., 

a MariaDB instance), what type of application it is (e.g., if it is a database or one that performs 

security checks), or which version of the application is used. It is worth noting that all of this 

information is considered sensitive in the context of confidential computing, since it could 

give adversaries valuable information for them to perform security attacks more efficiently, 

effectively, and stealthily. For example, if adversaries can discover that a confidential 

container implements a MariaDB image, they can design more targeted attacks, by taking 

advantage of known weaknesses and attacks commonly used against this type of database. 

Knowing the version of the application within the confidential container can further help 

adversaries choose which attack is most effective and efficient – especially in the case where 

there are known vulnerabilities against specific versions of the application. For example, if 

adversaries could know that MariaDB v10.2 is used, they could try to exploit the remote code 

execution vulnerability reported in CVE-2021-27928 [38], while if the version of the MariaDB 

container is 5.5 (or older), a highly successful option for adversaries would be to try to exploit 

the vulnerability reported in CVE-2016-6662 [39]. 

3.3.1.2 Threat Model 

We consider a cloud environment that offers confidential computing services to their 

customers. Container applications are protected using the standard container security 

mechanisms, and additionally are executed inside a TEE (e.g., Intel SGX). This allows 

application owners to upload the (encrypted) application directly into the TEE, after 

successfully attesting and establishing a shared key with the TEE (not known to the cloud 

providers). Here, we adopt the standard TEE adversary model [40], which considers 

adversaries who have root privileges, and hence full control over all software running outside 

of the TEE’s hardware-protected memory region, including privileged software such as the 

operating system, BIOS or hypervisor. 

The goal of the adversary is to discover sensitive information about applications running 

inside confidential containers solely from the information sent through the container-kernel 

interface. Adversaries view the confidential container (i.e., the victim) as a black box, and 

hence cannot distinguish between processes running inside the TEE or associate system calls 

with the processes from which they originate. The only information available to them is the 

list of syscalls invoked by the confidential container, namely what we use for our attack. To 

carry out the attack, the adversary first builds an Machine Learning (ML) model offline using 

information they gather from container images they own, or find in public repositories like 

Docker Hub [41]. As the most popular TEEs are open sourced, and the information about 

which TEE is used by each cloud provider is public, adversaries can easily recreate and study 
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any of the expected environments. At runtime, the adversary captures system calls invoked 

by a confidential container (the victim). Then, the adversary uses the previously trained ML 

model to infer sensitive information about the containerised application such as type, and 

even version. This type of attack can be carried out by the cloud providers themselves, or by 

malicious tenants who manage to escape the container and gain control of the underlying 

host. In the latter case, after carrying out the attack, the adversary has the same privileges as 

the cloud provider on that host. 

3.3.1.3 Technical challenges 

Next, we detail the main technical challenges we had to overcome to perform fingerprinting 

attacks against applications running inside confidential containers (C1, C2 and C3) and to 

mitigate them (C4).  

● C1. How to capture the application’s system calls. Containers have their own 

namespace. Thus, the visibility of the processes and their numbering are different 

inside and outside the container. Also, containers run applications that can spawn 

multiple processes during their execution. Here, the challenge is how to identify and 

monitor both the parent process of the container as well as all children processes 

spawned within the container in order to capture all system calls invoked by the 

application. It should be noted that this must be done transparently from the host 

side, i.e., without having to modify the application, the container runtime or the TEE. 

In addition, the proposed method must be able to group the system calls of each 

container together since there can be more than one container running on the server 

at the same time. 

● C2. How to distinguish between application system call patterns. Once the system 

calls have been captured, the second challenge is how to accurately associate the 

system call patterns to a Docker image (or application class). Both are very 

challenging tasks for a number of reasons. Firstly, Docker images are made up of 

layers, many of which are shared with many Docker images. In fact, it is common for 

software developers to download Docker images from public repositories, such as 

Docker Hub [41] or RedHat Quay [42] and use them as a starting point to build their 

own applications. Secondly, some container images require other containers to be 

created to work correctly, e.g., a database container to store the data they handle. For 

example, matomo – one of the leading open-source analytic platforms [43] – requires 

running a second container containing a MySQL database. These factors make it 

more difficult to distinguish container images solely from their system call patterns. 

● C3. How to perform these attacks in practice. After clearing the first two challenges, 

adversaries must think about how best to carry out their attacks in practice. The third 

challenge is related to this – more specifically on how to perform these fingerprinting 

attacks in an efficient, effective and stealthy manner. On the one hand, due to the 

large number of containers running in the cloud simultaneously, it would be 

undesirable for adversaries to have to monitor each containerised application for a 



 

FLUIDOS | D5.1: Seamless, zero-trust security and privacy (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 78 of 125 

 

long time in order to carry out the attack successfully. It is important to note that the 

goal of adversaries is always to conduct attacks that cause significant damage, while 

minimizing the cost of mounting them. On the other hand, adversaries must develop 

their fingerprinting attacks by taking advantage of container information that is stable 

and that cannot be easily hidden by application owners. For example, adversaries 

could fingerprint containers based on the name of the processes created within the 

container, or the hashes of the container layers. However, application owners could 

easily hide this information and thwart these attacks, for example, by renaming 

processes so that their names do not leak information, or making very small changes 

to the container layers so that the resulting hashes are completely different. 

● C4. How to protect against such fingerprinting attacks. To counter potential 

fingerprinting attacks, a viable defence strategy involves introducing controlled noise 

by injecting (fake) system calls during the container’s execution. This generation of 

noise is non-trivial, for several reasons. First of all, generating Differential Privacy (DP) 

noise, for example using a Gaussian distribution, requires information about 

distribution of syscall to be available. This is information that is not generally available, 

but it is a strong requirement to be able to generate noise in a robust manner. This is 

also crucial to avoid naïve implementations that would mask the signal at the cost of 

significantly degrade system degradation, or by not providing a real protection in 

terms of indistinguishability of the executed container image. Secondly, DP assumes 

that the noise could be both positive and negative. This is not possible in the current 

scenario, as preventing the execution of syscalls would cause disruption in the 

running container. Third, the way system calls are generated will need to follow 

realistic patterns, which means the syscall added needs to follow the logic 

relationship between syscalls. Randomly-generated and inserted system calls could 

lead to unrealistic system call patterns that could open the door for attackers to obtain 

the real system call patterns from the unrealistic ones. For example, by observing a 

close before fsopen, or a munlock before a mlock2. Finally, the proposed 

countermeasure needs to be able to handle both long and short running 

applications. This means that the noise needs to be generated in an approximation 

of a continuous, streaming, fashion. 

3.3.1.4 Methodology 

To assess the feasibility of our attack, we conducted our study using a substantial number of 

official images retrieved from Docker Hub, currently the largest and most widely used public 

repository for Docker images. Our initial step involved the development of a custom web 

scraper, leveraging the Docker Hub API [44], to obtain essential information required for 

running Docker Hub images. We then employed a monitoring agent, which we designed, to 

capture system calls generated by the containerized application during the first two minutes 

following its startup. For each observed system call, we collected critical data, including the 

timestamp (indicating when the system call occurred), process ID (identifying the originating 

process), and event name (detailing the syscall's name). Subsequently, we ran each container 
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multiple times while continuously gathering system call data generated by the applications 

running within them, thereby accumulating multiple traces for each container. 

Following the collection of application system calls, we conducted further data processing 

to extract valuable fields suitable for deriving features. We proposed and analysed two types 

of syscall features. The first type involves reflecting the presence or absence of different 

syscall types within the container trace, which we denote as binary vectors. In the second 

type, we counted the occurrences of each syscall in the container trace, creating frequency 

vectors. Each Docker image is represented by a syscall vector (binary or frequency), 

accompanied by its class label. This syscall vector serves as the feature set for analysis by the 

machine learning model. Initially, we considered 353 features, corresponding to the number 

of system calls supported by the Linux kernel. However, not all features hold equal 

importance. To enhance the model's generalizability and reduce noise, we conducted a 

feature importance analysis to identify which features contribute significantly to the machine 

learning model. 

Having extracted the necessary features from the collected data, the subsequent phase 

focused on assessing the feasibility of attacks designed to deduce the type of application 

running within a confidential container. This challenge was framed as a multi-class 

classification problem, where the adversary initially trains an offline machine learning model 

using their own Docker images, with each Docker image serving as a distinct class. We 

conducted this study using a 3-fold cross-validation approach and explored various 

hyperparameters and values across five distinct machine learning classifiers, including 

Random Forest, Neural Network, Support Vector Machine, Naive Bayes, and XGBoost. We 

evaluated the performance of each classifier by considering both types of features (binary vs. 

frequency). Although all models offer a fairly high accuracy, the Random Forest classifier we 

built provides the best performance.  

To mitigate information leakage, we propose a countermeasure based on the principles 

behind Differential Privacy (DP) [45, 46] that involves carefully injecting fake syscalls during 

the container’s execution in order to generate more uniform system call patterns, hiding the 

“identity" of the application executed within a TEE . The proposed mechanism involves an 

application running alongside the containerised one to generate a fictitious sequence of 

events to be captured by the adversary. Our technique leverages the fact that the adversary 

is not able to distinguish between the processes executed within a TEE. Note that this is not 

“free". Adding fictitious syscalls to a container running within a TEE has a performance 

overhead, i.e., it will introduce some form of delay because of the additional operations 

required to execute the added syscalls. Because of that, a key point in designing the defense 

mechanism is to minimize this overhead while providing sufficient privacy protection. 

In the following sections, we begin by showcasing a series of experiments that demonstrate 

the viability of executing the proposed attack. Subsequently, we introduce the 
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countermeasure we have developed to alleviate the information leakage stemming from the 

syscalls invoked by containerized applications. 

3.3.1.5 ML Modelling of Individual Containers 

Next, we detail the comprehensive set of experiments we conduct to assess various essential 
aspects, including the choice between binary and frequency system call vectors, the 
relationship between monitoring duration and ML accuracy, the influence of container 
execution parameters on the ML accuracy, and the robustness of container fingerprints when 
considering multiple versions of the containers 

 

1. Using Binary VS. Frequency Syscall Vectors. The next step is to assess the suitability 
of the two types of features we use in our work. To that end, we train a Random Forest 
ML model and compare the accuracy it provides when the Docker images are 
executed without parameters and monitored for 2 minutes, first when the binary 
syscall vectors are applied (denoted as ‘binary’) then when the frequency syscall 
vectors are used (denoted as ‘frequency’). Table 3.6 shows that with the frequency 
vector, the trained ML model achieves considerably higher accuracy. 

 

TABLE 3.6: ACCURACY, PRECISION AND F1-SCORE OF OUR TRAINED RANDOM FOREST ML MODEL TO FINGERPRINT 

APPLICATIONS RUNNING INSIDE CONFIDENTIAL CONTAINERS. WE SHOW THE OBTAINED RESULTS WHEN RUNNING 

THE DOCKER IMAGES WITH AND WITHOUT PARAMETERS, AND WHEN USIN 

 
 

2. Monitoring Time VS. ML Test Accuracy. We also carry out an experiment in which we 
analyse how different container monitoring times affect the ML model’s accuracy for 
the two types of feature we consider. For this experiment, we leverage the timestamp 
value on each system call in order to split our 2-minute container traces into smaller 
traces, starting with just 10 seconds and adding 10 seconds each time until we reach 
2 minutes. The results of the experiment, shown in Figure 3.15, demonstrate that in 
both cases the accuracy of the ML model evolves in a more or less linear way with 
respect to the containers’ monitoring time. From the results obtained, it is also easy 
to see that the frequency syscall vectors provide much better results. Remarkably, the 
accuracy of the trained ML model when using the frequency syscall vectors and the 
containers are monitored for just 10 seconds is higher than that achieved after 2 
minutes when using the binary system call vectors. 
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FIGURE 3.15: ACCURACY OF THE TRAINED ML MODEL FOR DIFFERENT CONTAINER MONITORING TIMES (IN SECONDS)

  

3. Running With VS. Without Parameters. Moving further, we investigate the possibility 
of fingerprinting attacks for the case where the containers are executed without 
parameters (i.e., by simply executing "Docker run container_name") as well as the 
case where the containers are run with their corresponding Docker parameters (e.g., 
with an open port to send/receive network traffic to/from users). With the former, we 
examine whether we can extract a unique container fingerprint from container logic 
that is always executed regardless of the Docker parameters the container runs with. 
Conversely, running containers with their parameters helps us quantify the effect of 
parameters in the container’s fingerprint. To know which Docker parameters each 
container uses, we look at their descriptions in Docker Hub. In the case that more than 
one "Docker run" command is shown in the description, we take the one with the least 
number of parameters to consider what is probably the worst case for adversaries 
(our hypothesis is that the Docker parameters make the container’s fingerprint more 
unique). Table 3.6 shows the accuracy, precision and F1-score of the Random Forest 
model when the Docker images are run with and without parameters, for the two 
types of features we consider (i.e., binary and frequency). We can see that in both 
cases it is slightly easier for adversaries to fingerprint applications running inside 
confidential containers when these are run with their corresponding Docker 
parameters, thus confirming our hypothesis 

 

4. Running Different Application Versions. In addition to the previous experiments, we 
analyse the similarity of system call vectors across various versions of the same Docker 
image. To perform the experiment, we manually extract the three most recent tags 
based on their order of appearance in Docker Hub (or version information) from each 
of the 149 official Docker images in our dataset. Next, we run each Docker image with 
its respective tags for 2 minutes, while collecting the system calls invoked in each 
case. From these data, we proceed to create the corresponding system call vectors 
for each Docker image and tag combination. During this process, we find certain 
combinations of Docker images and tags that do not produce satisfactory results, 
leading us to exclude those containers from further analysis. After excluding the 
problematic containers, we obtained a new dataset with 129 Docker official images, 
and used these containers in our subsequent experiment. 
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FIGURE 3.16: SIMILARITY BETWEEN DISTINCT VERSIONS OF DOCKER IMAGES 

We conduct a careful assessment of the system call vectors for each pair of Docker images 
and its corresponding tags, considering both the binary and frequency system call vectors. 
(Note that the binary syscall vectors are used to compute the Jaccard score and that the 
Cosine similarity is computed using the binary syscall vectors). Figure 3.16 shows the 
Cumulative Distribution Function (CDF) of the similarity scores for multiple instances of the 
same container (each with a distinct tag). The Jaccard similarity reveals that a significant 
number of container instances exhibit a perfect match, as indicated by the abundance of 
similarity scores equal to 1. This suggests that, despite new versions appearing, containers 
tend to use a fairly well-defined set of system calls. Similarly, the Cosine similarity vector also 
shows a high degree of similarity between container instances, with the vast majority of 
scores being close to 1. Nevertheless, it is worth noting that some instances show slightly 
lower scores, indicating subtle variations in their system call patterns. 
 
In general, both similarity measures reinforce the observation that different versions of the 
same container tend to possess very similar system call vectors, i.e., that the container 
fingerprint tends to be preserved. This means that samples collected from a container with 
an older version may be enough to identify instances of this same container running a newer 
version. This, on the one hand, can be positive since it would not be necessary for adversaries 
to retrain the originally created ML model using a dataset that includes new samples. 
However, we also see cases of images whose system call vectors can reveal the version of the 
container that is being used. In these cases, adversaries can extract a fingerprint that provides 
information not only what Docker image it is but also what version it is using. However, this 
would require adversaries to train the ML with samples from different versions of each of the 
containers in their dataset. 

3.3.1.6 Proposed countermeasure 

Generating a source of noise capable of injecting fictitious syscalls to hide the genuine 

system call pattern for a specific application presents key challenges. First, we can only add 

positive noise to establish indistinguishability among TEEs while preserving performance 

and functionality of the protected applications. Second, the execution of syscalls is not 

completely independent. Last but not least, the noise generator needs to operate over a 

fixed time window to be more generally applicable across containers with variable execution 

times. Choice of noise generation and addition mechanism are central to DP. 
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FIGURE 3.17: IMPACT OF THE DEFENCE STRATEGY 

We performed several experiments to evaluate the effectiveness of the defence mechanism. 
Specifically, we tested the approach in two scenarios using the dataset collected for the 
attack. The first one, shown in Figures 3.17a and 3.17c, assumes that the adversary collects 
information about executions of container images without the defence mechanism enabled. 
Thus, the adversary is able to collect information and create a model for image classification 
not affected by the noise generation. The second scenario, shown in Figures 3.17b and 
3.17d, assumes that the adversary is aware of the defence and of its impact on the data that 
can be observed from running containers, perhaps by executing container images in a TEE 
with the proposed defence mechanism enabled. In the latter case, the adversary trains the 
model to fingerprint the container images on noisy traces, hence allowing the model to be 
more robust to the fictitious syscalls added to the container. 
 
We evaluate both scenarios using 𝜖-values among the following values: 0.001, 0.01, 0.1, 1, 2, 
5, 100. These values have been selected according to theoretical [47] and practical [48] best 
practices, thus, ranging from high privacy values (any value less than 1), to the ones that 
provide less noise to be added to the system (any value more than 1). The results are shown 
to be in line with our expectations. Comparing the plots of Figure 3.17 with the baseline from 
Table 3.6, we see that as more noise is added, smaller 𝜖 values, the model perform less 
accurately. Moreover, Figures 3.17b-3.17d show how training the model using a dataset that 
has been created observing containers protected by the defence mechanism provides no 
significant advantages to the adversary. Hence, the similarity between both scenarios 
demonstrate that knowledge of the defence mechanism configuration provides no 
advantage to the adversary. 
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3.4   WORKLOAD PROTECTION 

3.4.1 Threats and Intrusion Detection 

Detecting threats and network intrusions within FLUIDOS-enabled federations necessitates 

careful consideration of two primary challenges: 

1. Resource Cost Management: Managing the expenditure associated with the 

computational resources employed by an Intrusion Detection System (IDS) is 

paramount. Efficient resource allocation and utilization are critical to ensure cost-

effectiveness while maintaining robust security. 

2. Training data: Equally significant is the scarcity of training data that accurately 

represents the attack surface of the federation. This deficiency in representative data 

poses a significant obstacle in training effective intrusion detection models. 

Within a FLUIDOS federation, an administrative domain might opt to lease computing 

resources from external domains for the execution of specific tasks. However, it is important 

to acknowledge that these resources come at a cost. Consequently, in the realm of security, 

an important challenge emerges: finding the optimal balance between the complexity of the 

detection algorithms that protect such tasks from cyber threats, which directly impact 

resource utilization, and the precision of threat detection. 

On the other hand, in terms of safeguarding the FLUIDOS federation against novel and 

unidentified threats, it becomes imperative to establish a mechanism enabling a member to 

share newly discovered security incidents with other members without the need to share 

sensitive data (e.g., portions of the network traffic or logs of the computing nodes). 

To address these challenges, in this Section, we first present a methodology designed to 

evaluate the overall performance of the entire pipeline of an ML-based IDS. This 

methodology enables a deeper understanding of how various configurations and settings 

influence the balance between detection accuracy and operational efficiency. 

Additionally, we introduce an enhanced version of Federated Learning, a technique for 

collaborative training ML models with privacy guarantees. The new approach, called FLAD 

for Federated Learning Approach to DDoS attack detection, has been specifically tailored to 

accommodate the unique constraints and demands of the cybersecurity domain. This 

adaptation is essential for optimizing the collaborative learning process within a federated 

cybersecurity context such as FLUIDOS. 

3.4.1.1 A methodology for Online Performance Analysis of Network Intrusion Detection 

Systems 

A FLUIDOS-enabled infrastructure defines a dynamic environment, in which it is possible to 

dynamically acquire and release resources from a node. As a result, a pay-per-use cost 
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defined by the Cost Manager and Resource Acquisition Manager is assigned to the allocation 

of resources. In this context, even after the deployment of a user-specified 

service/application, the user can adjust the amount of resources reserved based on criteria 

such as the monetary budget. Therefore, both the performance and the workload of the 

service could change throughout its execution. 

To harden the security of business applications running in FLUIDOS nodes, a user can couple 

the main service with an anomaly detection system that monitors the system to detect 

potential cyberattacks or malfunctions. However, the disposal of these algorithms requires 

computing power and memory, resulting in a higher overall monetary cost. Therefore, these 

algorithms need to be meticulously tuned based on the volume and level of detail of the 

data that should be gathered on the specific application, which is strictly influenced by the 

available budget and specifics of the underlying FLUIDOS node. Hence, two research 

questions arise: 

1) Is it always necessary to use all available traffic features to achieve a satisfactory level 

of detection accuracy? 

2) If we reduce the number of features to conserve computing resources (hence the cost 

of the service) in the FLUIDOS node, how would this impact the performance of the 

anomaly detection system, particularly in terms of accuracy and throughput? 

To shed light on this multifaceted challenge, we propose a novel methodology for evaluating 

the performance of a Machine Learning-enabled Network Intrusion Detection System. ML-

based NIDS are becoming more popular due to their effectiveness, flexibility, and high level 

of automation, but their “offline” assessment, which typically involves testing a trained model 

against a portion of historical data, is limited to mere classification of the flows. Instead, we 

introduce an "online" phase that simulates the complete process, from real-time feature 

extraction to network flow classification and filtering, leveraging different configurations.  

The architecture illustrated in Figure 3.18 offers an overview of the complete traffic 

processing pipeline of a user service (one or more applications) coupled with a NIDS. Initially, 

incoming network traffic entering the container and traffic generated by local applications 

FIGURE 3.18: HIGH-LEVEL COMPONENTS AND INTERACTIONS 



 

FLUIDOS | D5.1: Seamless, zero-trust security and privacy (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 86 of 125 

 

and services undergo filtration by the Traffic Filter. This filter relies on a blacklist to block 

packets identified as malicious. Subsequently, the traffic proceeds to the Feature Extractor, 

where relevant attributes are extracted for use by the Traffic Classifier. These attributes are 

gathered within a defined observation time window, ensuring sufficient data is available for 

the classification of network traffic. 

Regarding the Traffic Classifier, we operate under the assumption of employing an ML-based 

binary classification system, which categorises network traffic as either legitimate or 

malicious. The output from this classifier consists of a list of identifiers for traffic flows that are 

deemed malicious and need to be intercepted by the Traffic Filter. On the other hand, the 

union of the input layer and the feature extraction process defines the configuration space 

of the NIDS in our analysis. 

To explore possible setups in terms of performance and resource consumption of the NIDS, 

we adopt the traffic representation framework introduced in our previous work, known as 

LUCID [49]. This framework organizes network traffic into flows, with each flow consisting of 

packets sharing common attributes, namely source and destination IP addresses, transport 

ports, and protocol. Each flow is presented as an array of features, which serves as input for 

the ML model during the classification process. In this array, rows represent packets in 

chronological order, and columns represent packet-level features like timestamps, IP Flags, 

and more. A visual representation of a flow is provided in Figure 3.19. 

 

FIGURE 3.19: NETWORK TRAFFIC FEATURES REPRESENTATION 

The assessment of the NIDS's performance in the FLUIDOS node involves iteratively 

reducing the two dimensions of the feature array. This reduction entails decreasing the 

number of features f extracted from each packet and limiting the maximum number of 

packets p collected for each flow. The fundamental premise here is that by extracting less 

information from network traffic, a user can reduce the computational demands on the CPU 

and memory resources of the NIDS. During each iteration, the ML model's input layer shape 

is adjusted to align with the current array configuration, and the least important packet 

features are removed using a greedy-based approach named Recursive Feature Elimination. 

Our proposed methodology assumes the availability of a labelled dataset containing pre-
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recorded traffic traces, encompassing both benign and malicious traffic flows. A portion of 

these traces is designated for constructing training and validation sets, while another portion 

is reserved for forming the test set and enabling online evaluations. The training and 

validation sets are exclusively used for training and validating the ML models and conducting 

feature ranking. Conversely, we assess the offline accuracy of the models using unseen data 

from the test set. As a reference dataset for the experiments, we used the Intrusion Detection 

Evaluation Dataset CIC-IDS2017 dataset [50], which contains both legitimate and DDoS 

flows. 

Moreover, we considered three distinct ML model architectures for the task of traffic 

classification: a Convolutional Neural Network (CNN), a Multi-Layer Perceptron (MLP), and a 

Recurrent Neural Network (RNN). All these models take as input a representation of a traffic 

flow, as previously described. They share a common final classification layer which returns 

the probability of a flow being classified as benign or malicious, rounded using a 

classification threshold of 0.5. 

Notably, all three models demonstrate exceptional F1 scores on the test set, irrespective of 

the chosen combinations of p and f values, as detailed in Figure 3.20. Even when p=1 and 

f=1, the accuracy consistently surpasses 0.8. It is worth noting that employing only four 

features results in achieving nearly maximum accuracy and minimal False Negative Rate 

(FNR) across all models, regardless of the p.  

 

FIGURE 3.20: OFFLINE ACCURACY OF THE THREE ALGORITHMS WHEN FED WITH DIFFERENT FEATURES “F” AND 

PACKETS “P”. 
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To be precise, the RFE feature ranking algorithm consistently ranks four out of the following 

five features in the top four positions, albeit in varying orders: Highest Layer, TCP Window, 

TCP Length, IP Length, and Protocols. Our offline experimentation strongly indicates that 

extracting just five features from packets can yield remarkable accuracy while conserving 

computational resources. 

To evaluate the overall pipeline's performance, we inject the NIDS with the test portion of 

the traffic traces. The end-to-end throughput of the NIDS is measured in terms of packets/s 

and flows/s, considering the time spent by the system on various tasks, including blacklist 

lookup, feature extraction, feature pre-processing, and traffic classification. In this context, 

we want to understand how the throughput is impacted by p, f, as well as by the 

computational complexity of the ML model being used for traffic classification. 

 

FIGURE 3.21: PACKET RATE OF THE CNN WHEN USING DIFFERENT COMBINATIONS OF FEATURES F AND PACKETS P. 

Figure 3.21 displays the throughput of the CNN-based NIDS at varying values of p and f 

measured in packets/s. The throughput of the other two versions of the NIDS (MLP and RNN) 

follows similar trends. Overall, the 1p×1f configuration with the CNN is the fastest, achieving 

around 20 500 flows/s and 225 500 packets/s, while the 10p×10f configuration with the RNN 

is the slowest, with a throughput of approximately 1100 flows/s and 12 000 packets/s. These 

results reflect the findings of recent studies on the complexity of common ML architectures 

[51]. 

We also examine how well the NIDS updates the blacklist to block malicious traffic promptly 

in two setups of the CNN-based NIDS: 1) the Time Window approach, where features are 

collected by the Feature Extractor for a predefined time interval of 10 seconds before 

transmitting arrays to the classifier, and 2) an alternative method called Early Mitigation, 

implemented in the Feature Extractor, which sends a flow representation in array format to 

the classifier as soon as the array is filled, without waiting the end of the time window. Results 

are reported in Figure 3.22. 



 

FLUIDOS | D5.1: Seamless, zero-trust security and privacy (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 89 of 125 

 

 

FIGURE 3.22: ONLINE ACCURACY OF THE CNN WITH DIFFERENT COMBINATIONS OF FEATURES F AND PACKETS P. 

In cases of short flows (such as in CICIDS2017), around 73% of packets are not blocked by 

the Traffic Filter because the blacklist is not timely updated, as shown in the first plot. On the 

other hand, in the second plot, we notice a relevant improvement with the Early Mitigation 

strategy. Of course, with p=1 the FNR is very low because a flow is classified using only one 

packet and the blacklist is populated more frequently. On the other hand, using p=1 results 

in poor detection accuracy, with most of the flows classified as malicious (1p curve in the 

fourth plot). The plot depicting the FPR with the Time Window shows that the trend in the 

online test closely mirrors that of the offline test, while the Early Mitigation has a negative 

impact as the Traffic Filter initiates earlier blocking of misclassified benign flows, resulting in 

a higher FPR. 

In conclusion, this activity outlines a novel methodology for evaluating the effectiveness of 
the NIDS feature extraction, detection, and mitigation pipeline. Through a sensitivity 
analysis, we provide insight into how different settings impact the balance between accuracy 
and efficiency, enabling better-informed decisions for optimizing the performance of the 
system and the potential costs for allocating resources in a FLUIDOS node. Moreover, the 
methodology outlines the importance of undergoing an online validation phase, whose 
results indicate that accuracy scores obtained from conventional offline tests do not always 
reflect the full impact of misclassifications and implementation decisions on the overall 
performance of the NIDS. Our analysis suggests that the potential adoption of a NIDS in a 
FLUIDOS-enabled computing environment can be effective, and tuning its configuration 
would help save computational resources (hence monetary budget) while providing a near-
optimal detection performance. 

3.4.1.2  Training a ML-based NIDS with distributed data 

Federated Learning (FL) [52] is a recent approach for training Machine Learning (ML) 
algorithms with decentralized data. FL is a promising approach for enabling collaborative 
training and updating of ML models in a FLUIDOS-enabled computing environment, without 
the need to share private network data. This is important, as it allows multiple administrative 
domains to work together to improve the accuracy and security of their IDSs. 

In this Section, we present a novel adaptive Federated Learning Approach to DDoS attack 
detection (FLAD), which enhances Federated Averaging (FedAvg), the algorithm behind the 
original FL algorithm, to make it suitable for network security problems.   

FL relies on a set of participants called clients (the FLUIDOS administrative domains) that 
train the model on their local data, and on a central server that aggregates ANN model 
parameters collected from clients and distributes the aggregated model back to clients for 
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further training sessions. This sequence of operations is executed multiple times (federated 
training rounds) with no exchange of clients’ private training data, until a target convergence 
level is reached. 

The application of FL in cyber security for intrusion detection has been explored in previous 
research [49, 50, 53]. However, previous works rely on FedAvg, the FL mechanism 
introduced by McMahan et al., which necessitates a representative test set available at the 
server side to control the training process. We argue that this approach poses a data privacy 
issue and may restrict the applicability of FL in scenarios where only a subset of data classes 
can be tested by the server. It is reasonable to assume that network data containing recent 
cyber incidents against one or more clients may include sensitive information that cannot be 
shared with the server for testing purposes. Consequently, in such cases, the server would 
not have the ability to assess the performance of the aggregated model using the latest 
attack traffic. Furthermore, achieving convergence in the FL process can present challenges 
due to several factors. These include the presence of non-independent and identically 
distributed (non-i.i.d.) data across clients, as well as unbalanced datasets, which are common 
in network anomaly detection. Slow convergence can hinder the ability to promptly update 
the IDS service in response to attacks targeted at specific clients within the federation. While 
some of these issues have been addressed to some extent in previous works, their 
effectiveness remains uncertain, as outlined in the subsequent sections. 

To tackle the above challenges, we propose FLAD, in which the server verifies the 
classification accuracy of the global model on clients’ validation sets with no exchange of 
training or validation data, granting that the model is learning from all clients’ data and 
allowing it to implement an effective early-stopping regularisation strategy. FLAD is 
conceived to apply FL in the cybersecurity domain, where we assume that no attack data will 
be shared at any time between the FLUIDOS administrative domains and the server. We 
tackle the convergence of the federated learning process in the context of Distributed Denial 
of Service (DDoS) attack detection, with a focus on the trade-off between convergence time 
and accuracy of the merged model in segregating benign network traffic from a range of 
different DDoS attack types. We consider a dynamic scenario, where clients are targeted by 
zero-day DDoS attacks, and where the global model must be updated with new information 
as soon as possible to empower all participants with the latest detection features. 

Problem formulation 

McMahan et al. have evaluated the FedAvg algorithm for image classification and language 
modelling problems.  However, we argue that it does not satisfy two basic requirements for 
effective DDoS attack detection: 

1 Short convergence time to reach the target attack detection accuracy, especially in 
emergency threat situations in which the global model must be quickly distributed to 
clients upon retraining with recent DDoS attack information. Indeed, FedAvg assigns 
the same amount of computation to all the clients selected for a round of training, 
irrespective of the accuracy level reached by the global model on specific clients’ data. 
This inefficient management can lead to long FL training sessions with no substantial 
gain in accuracy. 

2 Accurate detection of all attack types in realistic conditions, where the detection system 
must learn from unbalanced and non-i.i.d. data obtained from heterogeneous DDoS 
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attack types characterised by different traffic rates and feature distributions. The 
weighted average of FedAvg gives more importance to the weights of the clients with 
large local training sets, to the detriment of the smallest ones. We argue that this 
strategy could hinder FedAvg’s ability to detect attacks characterised by out-of-
distribution features that are available only in small local training sets. 

Furthermore, it should be noted that FedAvg operates under the assumption that some test 
data is accessible at the server site to verify that a target accuracy of the global model is 
achieved and stop the training process. We argue that this assumption rarely holds in the 
cybersecurity domain. For instance, let us consider a scenario where one client contributes 
with updates related to zero-day attack traffic that is not public at training time. In this case, 
the only solution for the server to verify that the model has learned the new attack would be 
to use the client’s test set. However, even if we discount the willingness of the client to 
provide such information, this would require data cleaning (anonymisation) from the client’s 
sensitive information, with the risk of losing IP, transport and application layer features that 
could be critical for model validation. 

Threat model 

We consider a scenario in which the federation is composed of a set of clients (FLUIDOS 
administrative domains) that might belong to different organisations, plus an additional 
entity that manages the FL process (the central server). We assume that no one in the 
federation has the willingness/permission to share network traffic data with others. On the 
other hand, the federation’s goal is to enhance the DDoS detection capabilities of each 
client’ IDSs with attack profiles owned by other members. 

In such a scenario, the clients are vulnerable to zero-day DDoS attacks at any given moment. 
To ensure the highest level of security, our system requires the global model to be updated 
promptly with the latest information, empowering all participants with the most recent 
detection features available. However, it is important to note that the central server may not 
always have access to network traffic profiles associated with these new and evolving threats. 
As a result, verifying the effectiveness of the global model in classifying such attacks 
becomes a challenge. 

In this context, the adversary does not belong to the federation and does not have the 
knowledge to generate adversarial evasion attacks against the global ANN model [51]. 
However, it knows the IP addresses of the victims and how to generate DDoS attacks using 
spoofed network packets with the source IP address of the victims. 

Methodology 

The high-level idea behind FLAD is to involve in a training round only those clients that do 
not obtain sufficiently good results on their local validation sets with the current global 
model. For such clients, the amount of computation (number of training epochs and 
gradient descent steps/epoch) is determined based on their relative accuracy on their 
validation sets. Note that the accuracy score is computed by clients on their validation sets 
and communicated to the server upon request. Hence, no exchange of sensitive data 
between server and clients is involved. Compared to FedAvg, FLAD introduces a negligible 
traffic overhead between clients and server, without disclosing clients’ sensitive data, even 
for testing purposes. 
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The details of FLAD are presented in Algorithms 1, 2 and 3.  

The pseudocode in Algorithm 1 describes the main process executed by the server, which 
orchestrates the operations of the clients. The algorithm takes as input a global model (𝑤0) 
and the set of clients involved in the FL process (C). It runs indefinitely until convergence is 
reached, as controlled by parameter patience, which is the number of rounds to continue 
before exit if no progress is made. The federated learning starts with the initialisation of the 
variables that are used to record the best global model along the process (max accuracy 
score 𝑎𝑚𝑎𝑥) and to implement the early stopping strategy (counter 𝑠𝑐 keeps track of the 
rounds with no improvements in average accuracy score 𝑎𝜇). At line 5 of Algorithm 1, the 
amount of computation for the clients is set to the maximum values of training epochs and 
MBGD steps. The loop at lines 8-10 triggers the ClientUpdate methods (Algorithm 3) for a 
subset of selected clients 𝐶𝑡−1. Note that at round t = 1, 𝐶𝑡−1 = 𝐶0 = 𝐶, i.e., the input set of 
clients (line 4). 

 

At each round, the server computes the average of the parameters from all clients, 
regardless of whether they were involved in the previous round of training (line 11). The new 
global model is sent to all clients, which return the accuracy scores [𝑎𝑐] 𝑐 ∈ 𝐶 obtained on 
their local validation sets with the new global model (line 12). The server computes the mean 
accuracy score value 𝑎𝜇, which is used to evaluate the progress of the federated training 
(lines 13-19). If  𝑎𝜇 > 𝑎𝑚𝑎𝑥, the new global model is saved and the stopping counter 𝑠𝑐 is set 
to 0. Otherwise, 𝑠𝑐 is increased by one to record no improvements. When 𝑠𝑐 > PATIENCE 
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(in our experiments we set PATIENCE = 25 rounds), the process stops and the best model is 
sent to all the clients for integration in their IDSs (line 21). Otherwise, the server calls 
Algorithm 2 to determine which clients will participate in the next round and to assign the 
number of epochs and MBGD steps to each of them. 

 

Algorithm 2 starts with selecting the subset of clients 𝐶′ that will execute the local training in 
the next round. 𝐶′ is the set of 𝑐 ∈ 𝐶 whose accuracy score 𝑎𝑐 obtained on their local 
validation set is lower than the mean value 𝑎𝜇 (line 2). The number of epochs and steps 
assigned to each client 𝑐 ∈ 𝐶’ depends on the value of 𝑎𝑐. The rationale is that the higher 𝑎𝑐, 
the lower the amount of computation needed from the client (thus, fewer epochs and MBGD 
steps/epoch, as explained at the beginning of this section). This is formalised in the 
equations within the loop at lines 5-9, where each client 𝑐 ∈ 𝐶’ is assigned a minimum 
number of epochs/steps plus an additional amount that is inversely proportional to the 
accuracy score 𝑎𝑐. The scale factor 𝜎 ranges over [0,1], assuming value 0 when 𝑎𝑐 = (𝑎𝑐)   
(hence 𝑐𝑒 = 𝑒𝑚𝑖𝑛 and  𝑐𝑠 = 𝑠𝑚𝑖𝑛) and value 1 when 𝑎𝑐 = (𝑎𝑐)  (hence 𝑐𝑒 = 𝑒𝑚𝑎𝑥 and  𝑐𝑠 =
𝑠𝑚𝑎𝑥). Algorithm 2 returns the set of clients 𝐶′ that will perform computation during the next 
round, each assigned with a specific number of epochs and MBGD steps. 

The pseudo-code provided in Algorithm 3 outlines the local training procedure carried out 
by clients. This process starts from the weights and biases of the current global model 𝑤 
received from the server, and is executed for a number of epochs 𝑐𝑒 and MBGD steps 𝑐𝑠 
assigned by the server. The first operation is the computation of the batch size 𝑐𝑏 using 𝑐𝑠 
(line 4). It ensures that 𝑐𝑏 ≥ 1, for the cases in which the number of samples in the local 
training set is smaller than 𝑐𝑠. Once the batch size is computed, the algorithm continues with 
𝑐𝑒 ⋅ 𝑐𝑏 steps of gradient descent (lines 7-11) and finally returns the updated model to the 
server. 
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Experimental evaluation 

We compare FLAD against FedAvg, the original FL algorithm proposed by McMahan et al. 
[52] and against a recent FL-based solution for DDoS attack detection called FLDDoS [53]. 
Both FedAvg and FLDDoS adopt a randomised client selection strategy, while also 
employing fixed batch sizes and local training epochs across all clients. The goal of this 
evaluation is to expose the limitations of such design choices in a cybersecurity scenario, 
where the server does not possess a test set (for the reasons discussed earlier in this paper) 
to measure the performance of the global model on different attack types. 

We train the global model with FLAD until convergence, i.e., waiting for patience=25 rounds 
with no progress in the average F1 Score across the clients. Following this, we evaluate the 
performance of the original FedAvg algorithm and FLDDoS by subjecting them to the same 
number of training rounds as FLAD. 

We perform the convergence analysis in a worst-case scenario, i.e., with a federation of 13 
clients and a one-to-one mapping between clients and DDoS attack types. We replicate the 
same experiment by employing a federation of 50 clients, each containing two attack types 
in their local dataset. The latter settings align with Lv et al.’s evaluation of FLDDoS in their 
study [53]. 

Each experiment is repeated 10 times and the average metrics are reported in this section. 
As TensorFlow relies on a pseudo-random number generator to initialise the global model, 
and both FedAvg and FLDDoS perform a random selection of clients at each FL round, each 
experiment is initiated with a unique random seed to ensure diverse testing conditions. 

The results obtained in the worst-case scenario are summarised in Table 3.7, which reports 
average metrics across the 10 iterations of this experiment. As introduced in Section 7.3, 
FLAD is configured with adaptive tuning of epochs and MBGD steps of local training 
(E=A,S=A). FLAD is compared against two configurations of FedAvg, with E=1 and E=5 
epochs/round of local training, and against FLDDoS configured with E=10. 
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TABLE 3.7: AVERAGE METRICS OVER 10 EXPERIMENTS IN THE 13-CLIENT SCENARIO, WITH ONE-TO-ONE 

CLIENTS/ATTACKS MAPPING. 

Metric 
FLAD 

E=A,S=A 

FedAvg 

E=1,B=50 

FedAvg 

E=5,B=50 

FLDDoS 

E=10,B=100 

FL Rounds 68 68 68 68 

Round Time (sec) 9.08 34.19 179.48 205.39 

Total Time (sec) 617 2325 12205 13967 

F1 Score 0.9667 0.8577 0.9157 0.9091 

F1 StdDev 0.0369 0.2714 0.1597 0.1605 

F1 WebDDoS 0.8990 0.0815 0.8148 0.7376 

F1 Syn 0.9877 0.4563 0.4613 0.5094 

 

The table shows the advantages of FLAD over FedAvg and FLDDoS: higher accuracy within 
a shorter time frame. These improvements can be attributed to the dynamic client selection 
strategy implemented by FLAD. At each round of the federated training process, clients are 
chosen based on the performance of the current aggregated model on their local datasets. 
Consequently, FLAD prioritizes attacks that are more challenging to learn, specifically the 
o.o.d. attacks WebDDoS and Syn Flood. The clients with these attacks are selected more 
frequently for local training, with an average of approximately 44 and 46 rounds respectively 
out of a total of 68 rounds, compared to an average of around 18 rounds for the clients with 
the other attacks. 

In contrast, both FedAvg and FLDDoS rely on random client selection, where each client is 
involved in approximately 77% of the training rounds (around 52 rounds on average out of 
a total of 68 rounds), considering the client fraction F = 0.8 used in our experiments. This 
results in longer rounds due to the frequent inclusion of clients with large local datasets, 
even when their contribution is not essential for improving the accuracy of the aggregated 
model. Furthermore, FLAD dynamically tunes the amount of computation assigned to the 
selected clients at each round of training, resulting in a significant reduction in the average 
local training time per round. Comparatively, FLAD achieves an average local training time 
of around 9 seconds per round, while the two configurations of FedAvg require 34 and 179 
seconds per round, respectively. The FLDDoS configuration, on the other hand, takes more 
than 200 seconds per round. Consequently, FLAD’s adaptive allocation strategy not only 
decreases the per-round training time but also effectively reduces the overall duration of the 
federated training process. 

It is also worth noting that the overall performance of FLDDoS and FedAvg with E=5 is 
similar, as they assign approximately the same amount of computation to the clients. 
Specifically, FLDDoS is configured with E=10 epochs local training (as in the original paper 
by Lv et al. [53]), while FedAvg uses E=5 epochs with twice the number of MBGD 
steps/epochs due to the smaller batch size. Additionally, the strategy employed by FLDDoS 
to handle non-i.i.d. data does not yield significant improvements compared to FedAvg in 
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our evaluation scenario. In fact, the local models maintained by clients with o.o.d. data, such 
as WebDDoS and Syn Flood attack traffic, do not contribute to improving the accuracy of 
the global model on such attacks but, instead, increase the total training time. 

 

FIGURE 3.23: PERFORMANCE ON OUT-OF-DISTRIBUTION DATA, NAMELY ON THE WEB-DDOS AND SYN FLOOD 

ATTACKS. 

This is clearly shown in Figure 3.23, which shows the performance trend of FLAD, FedAvg 
and FLDDoS on the WebDDoS and Syn Flood attack traffic during the first of the 10 iterations 
of the experiment. The two plots clearly demonstrate that FLAD achieves faster learning and 
higher accuracy for both of these attacks, while FLDDoS and FedAvg with E=5 exhibit similar 
trends. 

In these plots, we can also observe the adaptive mechanism of FLAD in action. Once the 
global model has learnt a client’s data profile, FLAD excludes such client from the next round 
of federated training. In the case of clients with o.o.d. data, such as WebDDoS and Syn attack 
data, this behaviour might cause the model to forget what it has previously learnt on such 
attacks, as can be seen on both plots in the figure. However, this prompts FLAD to 
reintegrate such clients in the subsequent rounds of the training process, ultimately leading 
to global convergence. 

 

FIGURE 3.24: PERFORMANCE COMPARISON ON A FEDERATION OF 50 CLIENTS, TWO ATTACKS/CLIENT. 

Finally, Figure 3.24 presents the performance trend of FLAD, FedAvg, and FLDDoS in a 
scenario with 50 clients, where each client’s dataset consists of two attacks along with benign 
traffic. Also in this case, we repeated the experiment 10 times. However, due to limited 
space, only the test results of the first iteration are displayed. Nevertheless, a similar pattern 
was observed throughout the remaining nine iterations. The local datasets of the 50 clients 
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are generated by randomly combining pairs of the 13 datasets. For each test iteration, a 
different random seed is utilised to generate a distinct federation. 

It is worth mentioning that, given these test settings, the two o.o.d. attacks are present in the 
datasets of multiple clients. Due to this, we observe a higher average F1 score on the clients’ 
validation sets compared to the 13-client scenario (approximately 0.99 with FLAD and 0.94 
with FLDDoS and the two configurations of FedAvg) and lower standard deviation across 
the 50 local validation sets (approximately 0.01 with FLAD and 0.1 with FLDDoS and 
FedAvg). These results demonstrate the advantages of the adaptive mechanism 
implemented by FLAD, even in scenarios with more uniformly distributed and less 
imbalanced data. 

Discussion 

FLAD has been validated using an unbalanced dataset of non-i.i.d. DDoS attacks. However, 
we see the potential of the FLAD’s approach in other cybersecurity applications that are 
relevant to a FLUIDOS-enabled federation. For instance, we believe that FLAD can be 
effectively used to train generic network intrusion detection systems (IDS) in the presence of 
unknown network attack types, and can be adapted to train host-based IDSs in contexts 
where zero-day vulnerabilities are exploited to compromise computing infrastructure. 

3.4.2 Cyber Deception 

The highly-distributed nature of the FLUIDOS environment can undermine the security 

posture of the multitude of cloud-native applications running across different FLUIDOS 

nodes.  Due to the variety of technologies employed to implement the FLUIDOS software 

stack, malicious actors can leverage misconfiguration and/or vulnerabilities among the 

different modules of the FLUIDOS architectures to penetrate the microservices of a service 

provider in order to steal data and/or cause service disruption. As a consequence, traditional 

cyber defense mechanisms, such as intrusion detection systems (IDSs) and firewalls, may not 

be sufficient to ensure a dependable security perimeter, thus increasing the risk of insider 

threats. 

Cyber deception can be a valuable tool to enhance the security of the FLUIDOS ecosystem. 

This proactive defense strategy consists in the allocation of decoys, resembling legitimate 

system components, within the defender infrastructure to lure malicious actors into 

interacting with them. Decoys must appear realistic to engage the attacker and increase the 

likelihood of interaction. In this context, containerization techniques and cloud-native 

technologies like Kubernetes offer the means to craft high-fidelity and high-interaction 

decoys by replicating microservices from deployed applications with minimal complexity. By 

seamlessly integrating this deception mechanism into the existing microservices, defenders 

can better identify and mitigate attackers lateral movements between microservices, all while 

gathering valuable insights of their tactics, techniques, and procedures (TTPs). 

According to this intuition, we propose an algorithmic solution to address the decoy 

allocation problem (in other words, which and how many microservices should be cloned) 
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and an implementation solution to integrate such deception strategy within a real cloud-

native application deployment. In detail, we resume our contribution as follows:   

• We design a scalable resource-aware decoy placement strategy that selects which 

legitimate microservices of an application should be cloned as decoys in order to 

maximize the chance of the attacker interaction. Our solution can be integrated within 

the production environment of cloud-native applications thanks to the flexibility 

offered by container-based technologies. 

• We propose a first implementation of such a deception mechanism by developing a 

controller, extending the default K8s API, that automatizes  the decoy creation 

process as well as it integrates the instantiated decoys within the legitimate 

application data flow.   

 

3.4.2.1 State of the art  

Modern cyber deception has evolved towards the design of flexible and adaptive deception 

techniques tailored to the considered defense scenario in order to maximize the deception 

effectiveness and reduce the management cost complexity. A more detailed discussion of 

cyber deception principles and related challenges can be found in [54]. The authors of [55] 

develop a sandbox network that misdirects attacks from the production network towards 

deceptive applications that are one-to-one copies of legitimate ones. We instead limit the 

orchestration complexity by directly disseminating deceptive microservices replicas within 

the production infrastructure according to a given resource budget. In [56], the authors 

formulate a honeypot placement scheme given a limited budget of resources. Differently, 

we aggregate the exploit difficulty of the various microservices in order to place decoys on 

critical microservices whose violation would allow the attacker to spread more effectively 

among the infrastructure. The authors of [57, 58, 59] leverages game theory and deep 

reinforcement learning approaches to adapt the decoy allocation according to the attacker 

activity. Beside the omission of the decoy resource consumption, these suffer from a high 

computational complexity as the training procedure requires many iterations to converge 

toward a stable allocation policy. Differently, we tackle the design of a resource-aware decoy 

allocation scheme using an optimization-based approach that allows to extend the solution 

for a high number active microservices by leveraging a low-complexity heuristic. 

3.4.2.2 System Model 

We discuss the system model that we consider to design the decoy allocation strategy.  We 

provide a comprehensive representation of the main system features in Figure 3.25. 
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FIGURE 3.25: OVERVIEW OF THE CONSIDERED SYSTEM MODEL.  MICROSERVICES CAN BE VIOLATED BY MEANS OF 

REMOTE CODE EXECUTION TECHNIQUES (SOLID RED ARROW) OR BY CONTAINER ESCAPE TECHNIQUES (DASHED RED 

ARROW). 

3.4.2.3 Decoy configuration and placement model 

We assume that a service provider, referred to as the defender, deploys a cluster of M 

microservices over N nodes. Each microservices requires an amount of  CPU cycles and 

 memory.  To enhance the security posture of its applications, the defender employs 

microservices as decoys in order to intercept ongoing cyber-attacks targeting the deployed 

microservices. Each decoy can be considered as a clone of production microservices 

replicating the related functionalities as well as the interfaces towards adjacent 

communicating microservices.  We indicate the number of decoys cloning microservice m 

as  . Every decoy is configured to provide the following features:  

● Attack detection reliability: any data traffic intercepted by a decoy is considered as 

malicious since the legal data traffic is exclusively forwarded to production 

microservices. 

● High interactivity: each decoy reacts to the attacker input like a production 

microservice. However, any data extracted by the attacker is fake and its content is 

configured to resemble the structure of production data  

● TTPs monitoring: each decoy implementation is augmented by monitoring 

functionalities that allow the defender to gather cyber threat intelligence information 

on the attacker TTPs employed to violate the decoy. 

3.4.2.4 Attacker Model 

We consider an attack scenario where a malicious user, referred to as the attacker, has 

managed to bypass the defender’s security measures (such as IDSs and firewalls) and has 

gained unauthorized access to its cloud services by compromising one of the deployed 

microservices with the intent to steal important data. 
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The attacker utilizes any compromised microservice as a foothold to further violate other 

deployed microservices In detail, the attacker lateral movements can be executed by means 

of two techniques: 

● Remote Code Execution (RCE): the attacker can violate a microservice by injecting 

malicious code throughout its interfaces. The compromised microservice is used as a 

foothold to violate other communicating microservices.  

● Container Escape: the attacker exploits any non-root privilege configuration available 

in each container to interact with other containers that do not belong to the same 

name-space. In other words, we assume that the attacker can break the microservices 

logical isolation in order to compromise any microservice deployed on the same 

node. 

Regardless of the employed technique, we assume that the attacker cannot accomplish a 

privilege escalation to gain access to the whole cluster (i.e. the full set of nodes running the 

containerized microservices). This attack scenario would bypass any deployed defense 

mechanism and it is mostly due to a poor configuration of the system privilege levels 

performed by the defender, which is beyond the deception scope.  

3.4.2.5 Threat Model 

We model the potential threats of the considered scenario using graph theory in order to 

better tailor the design of an effective decoy allocation strategy. In particular, we introduce 

the attack graph (AG) associated to the current microservice deployment configuration as a 

directed acyclic graph G=(V,E,W) where: 

● V is the set of vertices corresponding to the active microservices and decoys. 

● G is the set of edges that express whether an attacker can move laterally from one 

microservice to another microservice by either leveraging RCE or container-escape 

techniques.  

● W is the weight associated with each in-ward edge and reflects the vulnerability level 

of the corresponding microservice (the lower the value, the higher is the vulnerability 

level). We formalized this quantity by leveraging Exploitability Metrics (EM) and 

Exploit Code Maturity (ECM) indicators.  

In this context, we formally define an attack path (AP) between a source vertex s (i.e. the 

attacker entry-point) and target vertex t (i.e. the target microservice whose violation makes it 

possible for the attacker to access some organization assets)  as the shortest path in AG. Note 

that this scenario represents the worst-case attack scenario where a malicious user employs 

the most efficient sequence of techniques to penetrate the system. 

Furthermore, if an AP contains at least one decoy between v and t (i.e. one of the vertices 

along the path represents a decoy) we denote this path as a deceptive attack path (DAP). 
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From the above definitions, we remark that a DAP is also an AP, hence we can generally refer 

to any path in the AG as an AP if needed.  

 

3.4.2.6 Problem definition 

The amount of DAPs in AG measures the deception quality of the decoy placement 

configuration since the higher is this value, the higher is the number of attacks that are likely 

to be intercepted by the decoys. Therefore, an effective decoy allocation maximizes the 

number of generated DAPs between any vertex pair in AG according to the resource 

availability.   

We illustrate this intuition in Fig. 3.26, where each decoy generates a number of DAPs equals 

to the number of APs traversing the cloned microservice. According to this dynamic, the 

allocation of decoys on microservices sharing multiple APs can produce a high number of 

DAPs and thus increases the decoys likelihood to misdirect and intercept possible attacks. 

Following this idea, we propose an optimization  problem that maximizes the number of 

generated DAPs by computing a suitable decoy allocation. Moreover, to overcome the 

prohibitive computational complexity of such formulation, we also propose a heuristic 

algorithm to approximate the optimal solution. We present the mathematical details of both 

schemes in the Appendix B section. 

3.4.2.7 Performance evaluation 

We evaluate the performance of the presented deception mechanism under different 

configurations of deployment sizes ranging from 100 to 500 microservices with a decoy 

resource ratio of 0.3. We randomly sampled 100 configurations of synthetically microservice 

architectures and we plotted the average results within the 95% confidence intervals for each 

considered simulation instance.  We compare the performance of the Optimal decoy 

allocation defined in equations (1)-(6) of Appendix B, which provides the performance 

FIGURE 3.26: EXAMPLE OF DAPS GENERATED BY A DIFFERENT NUMBER OF DECOYS ALONG A SPECIFIC AP IN AG. THE 

RED AND YELLOW MICROSERVICES REPRESENT THE AP SOURCE AND TARGET, RESPECTIVELY. 
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upper-bound of the considered metrics, and the related Heuristic allocation presented in 

Algorithm 1 with the following three schemes: 

● Linear: his scheme provides a decoy allocation that maximizes the number of DAPs 

without accounting for the additional paths introduced by the decoys. We assess the 

performance of this approach in order to analyse the performance gain provided by 

the optimal solution which accounts for every DAPs introduced by each decoy. 

● Sidecar: this scheme is a simple decoy placement strategy that allocates decoys on 

the most vulnerable assets. 

● Random: this scheme randomly allocates the decoys and it is used as a performance 

lower bound. 

Metrics 

We define the following metrics to compare the security performance achieved by the 

aforementioned decoy allocation schemes: 

● Decoy interaction probability: this is the probability that an attacker interacts with a 

decoy when moving laterally between the microservices composing an AP. In other 

words, this is the probability that an attacker follows a DAP in order to reach its target. 

We define this metric in order to provide a more practical insight about the deception 

performance of the considered schemes as it measures the decoys likelihood to 

intercept attacks. 

● Average number of decoy per AP: this metric measures the average ratio of decoys 

over the number of legitimate microservices contained in each AP. We define this 

indicator to evaluate the efficiency of the various schemes in condensing the 

allocation of decoys on microservices that are traversed by an AP. Intuitively, the 

higher is this value, the higher is the frequency that an attacker can interact with more 

than one decoy before reaching its target.  

Results 

In Figure 3.27 we present the decoy interaction probability. The optimal solution achieves 

the best performance as it distributes the decoys more effectively compared to other 

schemes thanks to the exact computation of the DAPs. 

The heuristic scheme provides some notable optimality gap since its greedy approach 

prioritizes the allocation of decoys along the same AP instead of diversifying the allocation 

on other APs. However, it still generates a higher number of DAPs compared to the linear 

scheme, which underestimates the number of generated DAPs as it neglects the impact of 

the allocated decoy on the AG topology. The sidecar is outperformed by all schemes since 

it does not consider the sequence of microservices that must be violated by the attacker in 

order to reach the target. 
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   FIGURE 3.27: DECOY INTERACTION PROBABILITY                           FIGURE 3.28: AVERAGE NUMBER OF DECOYS PER AP                                            

In Fig. 3.28 we show the average number of decoys per AP. In general, the discussion of the 

previous plot also applies for this scenario. The optimal scheme ensures the highest number 

of decoys per AP as it places the decoys along microservices contained in multiple APs. The 

heuristic scheme achieves similar performance and provides better gain compared to the 

linear and sidecar schemes. In particular, the greedy nature of the heuristic scheme 

encourages the allocation of decoys on microservices within the same AP. This strategy 

generates a high amount of DAPs at each new algorithm iteration thanks to the already 

allocated decoys along that AP in the previous steps. In Figure 3.29 we show the total number 

of allocated decoys. The number of decoys increases as more computing nodes are 

activated to accommodate the required microservices. Generally, excluding the random 

scheme which is resource-agnostic, the various schemes roughly deploy the same number 

of decoys in a given microservice deployment configuration. This behaviour confirms that 

the performance gain provided by the optimal and heuristic schemes derive from a decoy 

allocation that is tailored to the vulnerabilities of the current microservice deployment and it 

is not due to a higher number of allocated decoys that artificially inflates the number of 

generated DAPs. In Figure 3.30 we show the convergence performance of the considered 

schemes. The non-linearity of equation (1) of Appendix B makes the optimal scheme 

unsuitable for large-scale microservice deployments that need to be frequently updated due 

to the high convergence time. Conversely, the heuristic decoy allocation requires a 

considerably lower computational complexity, thus it is preferable in the aforementioned 

scenarios. Moreover, the proposed heuristic also outperforms the linear approach, which 

suffers from a similar trend as the optimal scheme when the number of microservices is 

higher than 300. The sidecar scheme is characterized by a very low complexity due to the 

simplicity of its approach, which however achieves poor results in terms of DAP generation 

as previously discussed. As a consequence, the optimal and heuristic schemes provide the 

most effective solutions to ensure an effective deception strategy and a scalable decoy 

placement configuration, respectively. 
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3.4.2.8 System implementation approach 

As anticipated above, a first implementation of the deception mechanism has been 

developed and it will be tested experimentally in the next reporting period. During the 

design and implementation phases we took into consideration modularity and extensibility, 

for this reason two main components with different responsibilities are proposed: 

Decepto 

Decepto is the component responsible to automatize the decoy creation process integrating 

decoys within the legitimate application data flow. Moreover it offers notification and 

monitoring mechanisms to identify the behaviours of an attacker. It targets Kubernetes 

environments by extending its default API using CRD (Custom Resource Definitions). In more 

detail it offers the following main features: 

- Cloning of a generic microservice into a decoy: the ability to clone a microservice at Pod 

level taking into consideration the resource-aware algorithm directives. The new 

decoy Pod is instrumented to control alerting and monitoring features. 

- Isolating communication flows across the application microservices: the ability to 

programmatically control the communications flows across legitimate microservices 

and/or decoys. Implementation through activation/deactivation of proper network 

rules and service discovery entries. 

- Monitoring the adversaries behaviours: the ability to collect all relevant data in order to 

identify as much as possible the attackers’ behaviour patterns. Collects system-calls, 

cluster audits, application logs and microservices in/out traffic. 

- Alerting when a decoy receives unwanted traffic: the ability to discover potential 

malicious communications and notify them to start other relevant actions. A 

background process listens in promiscuous mode to the connections to the decoy 

which should never receive incoming traffic. 

FIGURE 3.30: TOTAL NUMBER OF ALLOCATED DECOYS FIGURE 3.29: COMPUTATIONAL COMPLEXITY 

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
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Decepto software artifact and relative documentation are available at the following Git 

repository: https://gitlab.fbk.eu/cyber-deception/decepto.  

Decoy placer  

Decoy placer is the component responsible for providing a given placement strategy. It is 

designed on top of a standard interface that receives inputs, such as the application on which 

it should compute the given strategy and returns as output the list of microservices that 

should be cloned as decoys. This design makes it an extremely extensible and scalable 

component, indeed it comes with four strategy implementations: the first three are used for 

testing purposes while the latter is the implementation of the strategy described above. 

Decepto and Decoy placer processes communicate through shared and public interfaces 

and data models, publicly available in the above repositories, that permit anyone to extend 

or customize the placement strategy. 

3.4.2.9 Design 

Decepto Custom Resource Definition 

In order to manage the decoys of a given application, Decepto needs a way to represent it 

by means of a set of microservices and dataflows. Microservices are either legitimate services 

of the application or clones of them while dataflows represent the allowed communications 

across microservices which could be legitimate when used by users of the application which 

follow the application logics or illegitimate when used by an attacker and potentially does 

not follow the application logics. 

We define the model of a generic application, which is also used to extend the default k8s 

API via a CRD, using the Application Graph that is depicted in detail on Figure 3.31. 

FIGURE 3.31: APPLICATION GRAPH (CRD) 

https://gitlab.fbk.eu/cyber-deception/decepto
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System components and modules 

The implementation of the system relies on two main components: the Decoy placer and 

Decepto. While the first is essentially a collection of algorithms that implement different 

strategies on top of a standard interface, the second is made up of 6 modules, each of which 

offers certain functions to the overall system. Figure 3.32 depicts all the modules and how 

they interact with each other. 

3.4.2.10 Decepto module implementation 

We propose hereunder a deep dive on the implementation details for every module of the 

system, highlighting main features and default behaviours. 

Manager 

It is a non-terminating control-loop with various key responsibilities, indeed it performs a set 

of actions at a regular intervals and listens for system events via HTTP API. 

This component collects infrastructure and workload information at a regular interval by 

querying the Resource reporter and sends it to the decoy-placer in order to get instructions 

for any new decoy to install/delete in/from the system. Then it programmatically modifies the 

AppGraph resource by updating its desired state through the Kubernetes API. 

This component exposes an HTTP interface used to receive updated information from the 

monitor and from the sentinel components. For instance it is notified with an alert when a 

decoy is contacted because a potential breach is discovered. 

Finally, in the upcoming releases, the manager will be responsible for analysing logs, metrics 

and traces in order to better study lateral movements and reconstruct the behaviour of the 

attacker. 

FIGURE 3.32:  SYSTEM COMPONENTS AND MODULES 
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AppGraph controller 

AppGraph controller is a Kubernetes controller inspired from the Kubernetes Sample 

Controller project which is responsible for managing CRUD operations on the AppGraph 

CRD. As any standard Kubernetes controller does, it controls the desired and actual state of 

the AppGraph resources which describes the graph of all microservices, decoys and their 

communication. 

It monitors the actual state of the managed applications in the cluster, by constantly looking 

at its decoys as well as the communications across them and intercepts any inconsistency 

with the desired state specified in the CRD. As soon as the CRD is modified by a user or by 

the Decepto manager, it reacts by invoking relevant action in the system, for example 

activating the Cloner or the Isolator relevant actions. 

Resource reporter 

As its name suggests, the Resource reporter component is used to report the status of the 

cluster in terms of Infrastructure: detailed information about Kubernetes node resource 

usage and Workload: detailed information on microservices and data flows for any activated 

AppGraph, hence it relies on the data model presented in the previous sections but 

performing filtering operations across all the Pods running in the cluster to select only those 

which are part of any application controller by  Decepto. To complete this mapping 

operation between the CRD and the application workload it uses two labels: appgraph and 

app. 

Cloner 

This component is responsible for creating decoys starting from legitimate microservices by 

installing in the system a slightly modified copy of the legitimate Pod. 

The cloning process involves the following steps: 

• Create a new Pod by cloning the original Pod and instrumenting it with monitor and 

sentinel sidecar containers 

• For every cloned Pod, it resolves and fixes some dependencies the microservice has 

with other resources in the system. On the service discovery, for example it: 

- Creates new services by copying from those pointing to the original Pod, 

allowing the decoy to be reachable and discoverable 

- Removing the value of every environment variables used to contact other 

microservices, denying the discovery of other legitimate components 

• Install the decoy in the cluster and properly modifies the Network Policies by making 

it available in the application network domain 

https://github.com/kubernetes/sample-controller
https://github.com/kubernetes/sample-controller
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Isolator 

This component grants isolation at application level on the communications among the 

application microservices and it is able to control it in a programmatic way by means of i) 

rules that allow or deny traffic between the application microservices depending on the 

topology of the communication graph the system wants to achieve and by means of ii) proper 

addition/removal of k8s Service resources in the k8s service discovery. 

For instance, at first it allows only the legitimate traffic between the microservices of the 

application, later on, when a decoy has been placed, it also allows the traffic towards it, 

meaning that all the containers in the same k8s namespace will be able to reach and discover 

the newly installed decoys. 

In the final version it should grant the following: 

• From legitimate microservices to legitimate microservices: 

- All communications are possible and discoverable 

- All other communications (e.g.: to microservices part of other AppGraph) are 

denied by default 

- Service discovery of allowed destinations is possible 

• From legitimate microservice to decoys: 

- A communication is allowed if it: 

o Is initiated by a legitimate micro-service 

o Respect the original legitimate flow specified in the AppGraph CRD 

- Communications from a given legitimate microservice to its decoy/clone are 

denied 

- Service discovery of allowed destinations is possible 

• From decoys to legitimate microservices: 

- All communications are denied if initiated from the decoy 

- Service discovery is denied 

• From decoys to decoys: 

- A communication is allowed if it: 

o Respect the original legitimate flow specified in the AppGraph CRD 

o Service discovery of allowed destinations is possible 

Sentinel 

Sentinel is a tiny and simple service which is injected as a sidecar into any decoys created by 

Decepto with the sole objective to raise an alert if any unwanted communication reaches it. 

Of course the decoys should not receive any traffic by its nature so it considers possibly 

harmful any connection that reaches any decoy Pod. Once discovered, Sentinel collects 

useful information such as the source IP, the timestamp and other packet low level details, 
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which are crafted into a message and sent to the Decepto manager via the HTTP API notifying 

a possible lateral movement in action. 

Monitor 

The monitor is responsible for collecting traces about all the relevant communications across 

applications components and decoys with the main objective to study and reconstruct the 

behaviour of an attacker interacting with the deceptive environment. 

This component will be implemented with a client/server architecture, hence the client part 

is injected as a sidecar into the decoy and it is responsible for collecting all incoming and 

outgoing communication, while the server is installed in the system backend as its purpose 

is not only to collect but also to analyse traces, like application log streams, container system-

calls, k8s audit logs and node system logs, looking for correlations. 

In the first Decepto release the monitor relies on tcpdump to collect network traffic only at 

client side, but later on it could be enriched with the integration of Sysdig and/or 

Prometheus. 

3.4.2.11 System phases and life-cycle 

We identified three main phases in which actors interact in different ways with the overall 

system. The first two are characterized by the fact that an attack is not yet discovered while in 

the former a possible threat has been identified by the system. These phases are described 

below and respective diagrams are presented in Appendix B. 

Setup phase 

This first phase collects preparatory steps the developer must perform in order to first make 

its application compliant with the Decepto system then to activate the Decepto features for 

a given application. In this phase are also included the interactions between components 

during the initial configuration of the system. Steps can be summarized as follow: 

• Developer defines the Application Graph data model for a given application and 

writes it in a yaml format by respecting its CRD definition. 

• Developer modifies the manifest of the given application in order to include the two 

labels used by Decepto to perform the mapping between the CRD and the 

application workload: appgraph and app. 

• Developer installs a given application in the cluster following the deployment method 

of his choice. 

• Developer inputs the AppGraph custom resource in the cluster, thus activating 

Decepto for a target application 

• A set of Network Policy rules is set up by the isolator in the cluster to permit only 

legitimate application flows. 
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Cloning phase 

This phase aims at summarizing the honeypot setup by cloning microservices under the 

directive of the decoy placement strategy. Following steps are included in this phase: 

• At a regular interval Decepto polls the Resource reporter in order to retrieve 

application and cluster information. 

• Decepto manager reports Workload and Infrastructure to the Decoy placer asking for 

decoy placements 

• Decoy placer returns a list of instructions for cloning microservices into decoys and 

Decepto updates the AppGraph CRD. 

• If desired state is different with respect to the actual state, the AppGraph controller 

takes corrective actions by querying the cloner and the isolator 

• If needed, cloner start the cloning process for the given microservices 

• If needed, isolator add or update relevant Network Policies 

Manage threat phase 

In this phase we describe the interactions between components after the honeypot setup 

and when a potential threat has been discovered in the system. Following steps are included 

in this phase: 

• Sentinel sidecar monitor the decoy for incoming connections 

• If unwanted lateral movement is intercepted, it alerts Decepto for a possible threat 

• Decepto intercept the alert and start the monitoring process which permits to grab 

more information of the attacker and study his behaviour 
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4 DISSEMINATION ACTIVITIES 

This section highlights our efforts to share our research within the scientific community. 

Through conferences, papers, and proceedings, we contribute to the collective knowledge 

in the field of secure computing in FLUIDOS. 

In this regard, the following scientific dissemination activities were performed by the 

partners. 

4.1   CONFERENCES 

4.1.1 The 5th International Workshop on Cyber-Security in Software-defined and 

Virtualized Infrastructures (SecSoft) 

5th International Workshop on Cyber-Security in Software-defined and Virtualized 

Infrastructures (SecSoft) is a joint initiative from EU-funded projects (including FLUIDOS, 

PALANTIR, SIFIS-Home, ELECTRON, RIGOUROUS, and CATRIN) with WP5 members in the 

steering and organising committees, as well as in the TPC, and co-located with the 9th IEEE 

International Conference on Network Softwarisation.  

This edition of the workshop has welcomed contributions from members of the projects 

within the organization, as well as from contributors and practitioners working on the theme 

of "Security, Safety, Trust, and Privacy support in virtualized environments". The project 

FLUIDOS and its security-related technical challenges were presented and discussed with 

active audience participation. Additionally, two papers from the project were presented. 

4.1.2 The 3rd Eclipse Security, AI, Architecture and Modelling Conference on 

Cloud to Edge Continuum 

 

Polito participated to the 3rd Eclipse Security, AI, Architecture and Modelling Conference on 

Cloud to Edge Continuum, held in Ludwigsburg (Germany), October 17, 2023 with a 

presentation entitled “Enabling Compute and Data Sovereignty with Infrastructure-Level Data 

Spaces”. 

The Liqo Protected Borders Extension introduces infrastructure-level data spaces, facilitating 

secure data exchange and resource sharing while aligning with the data gravity concept. It 

automatically enforces privacy, security, and access policies, enabling data providers to share 

data confidently. The International Data Spaces (IDS) Connector is a vital component for 

secure data exchange, handling entity authentication and policy enforcement. It also acts as 

an application-level gateway, offering uniform access to data and ensuring security 
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measures. However, this architecture lacks support for computing components, does not 

address data gravity concerns, and requires publicly reachable endpoints. To address these 

issues, the proposed architecture can be integrated with application-level data spaces, 

providing flexibility and scalability. 

4.2 PAPERS AND PROCEEDINGS  

In this section, we describe the various activities we have been involved in sharing our 

research and findings. This includes our participation in conferences, where we have both 

presented our work and helped in organizing these events. We also list the papers we have 

authored and submitted to conferences and journals, some of which have been published 

while others are still being reviewed. 

4.2.1  Conference and journal papers published 

• (TID) E. Marin, D. Perino, R Di Pietro, "Serverless computing: a security perspective", 

Journal of Cloud Computing, 11, 69 (2022), doi: https://doi.org/10.1186/s13677-

022-00347-w.  

In this article we review the current serverless architectures, abstract and categorise 

their founding principles, and provide an in-depth security analysis. In particular, we: 

show the security shortcomings of the analysed serverless architectural paradigms; 

point to possible countermeasures; and, highlight several research directions for 

practitioners, Industry, and Academia. 

● (FBK) S. Magnani, R. Doriguzzi-Corin and D. Siracusa, "Enhancing Network Intrusion 

Detection: An Online Methodology for Performance Analysis," 2023 IEEE 9th 

International Conference on Network Softwarization (NetSoft), Madrid, Spain, 2023, 

pp. 510-515, doi: 10.1109/NetSoft57336.2023.10175465.  

This paper proposes a methodology for evaluating the effectiveness of a Network 

Intrusion Detection System (NIDS) by placing the model evaluation test alongside an 

online test that simulates the entire monitoring-detection-mitigation pipeline. 

Besides that, the paper shows that in resource-constrained environment (like the 

cloud-to-edge continuum proposed in FLUIDOS), it is possible to reduce the amount 

of data monitored and fed to the anomaly detection module without severely 

affecting its accuracy and with a moderate impact on the mitigation capabilities of the 

system. 

• (UMU) J. M. B. Murcia, J. F. P. Zarca, A. M. Zarca and A. Skármeta, "By-default Security 

Orchestration on distributed Edge/Cloud Computing Framework," 2023 IEEE 9th 

International Conference on Network Softwarization (NetSoft), Madrid, Spain, 2023, 

pp. 504-509, doi: 10.1109/NetSoft57336.2023.10175478. 
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This paper provides a by-default security orchestrator approach to mitigate the above 

mentioned challenges in distributed edge/cloud computing frameworks. We use an 

Intent-based/policy-based orchestration paradigm for dealing with heterogeneity, 

allowing users to request service deployments securely without requiring knowledge 

about the underlying distributed infrastructure. By-default security orchestration will 

decide how to provide the requested services, ensuring that they are compliant with 

the security requirements provided by the user and the ones gathered by the system, 

locally and from reliable external sources. We provide design and use-cases based 

workflows for managing by-default security orchestration in proactive and reactive 

ways. In the future, it is expected to perform the implementation and validation of the 

proposed approach inside the scope of the FLUIDOS EU project. 

 

4.2.2 Conference and journal papers under review 

 

● (TID) E. Marin, N. Kourtellis, D. Perino, S. Braghin, A. Rawat, N. Holohan, “Detecting 

and Mitigating Information Leakage at the Container-Kernel Interface”, under review 

at ASIACCS 2024. 

In this paper, we introduce a novel side-channel attack targeting confidential 

computing, that exploits information leakage in the interactions between TEE-backed 

containers and the host OS kernel. By observing system calls, adversaries can infer 

previously unknown sensitive information about containerised applications (e.g., the 

exact images, their version, or their class), that can allow them to conduct more 

efficient, effective and stealthy attacks. We demonstrate the effectiveness of the attack 

and assess its feasibility for weak adversaries with limited monitoring time. To mitigate 

information leakage, we propose a countermeasure based on the principles behind 

differential privacy that involves carefully injecting fake syscalls during the container’s 

execution in order to generate more uniform system call patterns. 

• (TID) H. Kang, E. Marin, M. You, J. Kim, D. Perino, and S. Shin,. "BeaCon: 

Automatic Container Policy Generation using Environment-aware Dynamic 

Analysis", under review at EuroSys 2024.  

This paper presents BeaCon, a novel approach for the automated generation 

of Docker container security policies that are adjustable based on the level of 

security application owners wish to have. Unlike previous works, we develop 

BeaCon based on dynamic analysis which applies realistic environments to 

trigger container execution paths that would otherwise not be visible during 

the container’s profiling phase. In addition, we propose the use of a security 

and functionality score that determines the importance of each system call and 

capability to the security of the host OS kernel and the functionality of the 

containerized application, respectively. From these scores, BeaCon gives 

application owners the ability to fine-tune the policies depending on the 

requirements of their application. We implement a full-fledged prototype of 
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BeaCon utilizing eBPF kernel technology and conduct an extensive set of 

evaluations to demonstrate its efficiency in mitigating the limitations of 

previous studies. Finally, we present two widely-known, serious security 

vulnerabilities that can reduce risk if policies are generated using BeaCon. 

• (FBK)  R. Doriguzzi-Corin, D. Siracusa, "FLAD: Adaptive Federated Learning 

for DDoS Attack Detection", under review at Elsevier's Computers & Security 

journal. 

The Federated Averaging algorithm at the core of the FL concept requires the 

availability of test data to control the FL process. Although this might be 

feasible in some domains, test network traffic of newly discovered attacks 

cannot be always shared without disclosing sensitive information. This is 

specifically the case of FLUIDOS. In this paper, we address the convergence 

of the FL process in dynamic cybersecurity scenarios, where the trained model 

must be frequently updated with new recent attack profiles to empower all 

members of the federation with the latest detection features. To this aim, we 

propose FLAD (adaptive Federated Learning Approach to DDoS attack 

detection), an FL solution for cybersecurity applications based on an adaptive 

mechanism that orchestrates the FL process by dynamically assigning more 

computation to those members whose attacks profiles are harder to learn, 

without the need of sharing any test data to monitor the performance of the 

trained model. 
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5 CONCLUSION AND NEXT STEPS 

In this report, we have investigated the security considerations within the FLUIDOS project. 

We began by gathering security requirements from FLUIDOS' various components and 

partners, ensuring alignment with project use cases. We also conducted a high-level threat 

analysis to identify vulnerabilities within the FLUIDOS architecture. This process revealed 

potential security threats, underscoring the importance of robust security measures. 

In response to the identified threats, we propose several mitigation services and mechanisms 

showcased during the different phases, from the discovery of peering candidates to resource 

acquisition and utilization. Our work has encompassed trust establishment, resource 

segregation and control, system attestation, workload confidentiality, and advanced threat 

detection and mitigation.  

Note that this work will remain dynamic to ensure that we effectively address evolving security 

challenges. We plan to update the threat analysis to align with FLUIDOS's Work Packages 

(WPs) and incorporate feedback from open calls. 

Our ongoing research and development efforts will focus on key topics from the first 

reporting period, including authentication, authorization, system attestation, privacy and 

confidentiality preserving, border protection, and the provision of cyber deception as a 

service. 

In addition to that, we also plan to address some threats that were not considered so far, by 

assessing trustworthiness of repositories from which images are being deployed in FLUIDOS 

providers' nodes, as well as by investigating potential attacks that a malicious actor could 

perform against the orchestrator.  

Finally, a selected set of the proposed solutions will be validated through the use cases 

proposed in FLUIDOS.  
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APPENDIX A – FLUIDOS WORKFLOWS 

 

 

Figure A. FLUIDOS Discovery Workflow 

 



 

FLUIDOS | D5.1: Seamless, zero-trust security and privacy (V 1.0) 

 

© 2022-2025 FLUIDOS                   Page 120 of 125 

 

 

Figure B. FLUIDOS service requests Process 

 

 
Figure C. FLUIDOS resource acquisition process 
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APPENDIX B – CYBER DECEPTION 

CYBER DECEPTION DESIGN 

We report hereafter the mathematical formulation of the proposed optimization problem as 

well as the related heuristic algorithm approximating the optimal solution. 

Optimal decoy allocation 

We formalize the decoy allocation dynamic by leveraging the concept of Betweenness 

Centrality (BC) of a vertex. This metric measures the number of shortest paths traversing each 

graph vertex and offers an analytic approach to tackle the decoy allocation problem. The 

higher this value is, the more “central" is the related vertex compared to the surrounding 

vertices since its location allows it to reach multiple destinations with minimum cost. In our 

scenario, we can consider the BC as a security metric indicating the likelihood that a 

microservice may eventually interact with an attacker. Consequently, a suitable decoy 

allocation strategy should select those microservices with high BC values in order to increase 

the decoys chance to intercept possible attacks. 

Following this idea, we formulate the following optimization problem:            

 

(1) 

subject to  

 

(2) 

 

(3) 
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(4) 

 
(5) 

●  (6) 

Each addend in the objective function (1) provides the number of DAPs generated by the 𝑥𝑚 

decoys replicating microservice m. In particular, 𝑏̄(𝑣𝑚) is the BC value associated to vertex 𝑣𝑚 

that accounts for DAPs generated by already deployed decoys. We remark that we proposed 

a closed-form formulation 𝑏̄(𝑣𝑚) as a function of 𝑥𝑚 in order to analytically compute the total 

number of generated DAP.  Constraints (2)-(3) ensure that the allocated decoys do not 

exceed the dedicated CPU and RAM resources defined by the decoy resource ratio , 

respectively. The latter indicates the fraction of available resources dedicated to the 

deception mechanism. Constraints (4)-(5) enforce that each decoy must be allocated on the 

same node of the cloned microservice. Finally, constraint (6) expresses the integer nature of 

the considered allocation problem. The non-linear objective function as well as the integrity 

constraint render the problem complexity NP-Hard.  For this reason, this problem 

formulation is not practical for a highly dynamic ecosystem composed of thousands of 

microservices deployed across multiple FLUIDOS nodes. Their resource occupation might 

be often reconfigured, which would trigger a possible deployment re-orchestration with a 

consequential need to recompute the decoy allocation as well. To overcome this limitation, 

we approximate the optimal allocation by designing an heuristic decoy allocation scheme to 

reduce the solution computational complexity. 

Heuristic decoy allocation 

The proposed heuristic consists of a greedy algorithm that prioritizes the allocation of decoys 

on microservices that require a low amount of resources and, at the same time, that are 

traversed by a high number of APs (in other words, it employs the BC values associated to 

each microservice in the original AG). In detail, the algorithm allocates one decoy at every 

iteration and updates the DAPs generation according to the previously allocated decoys. 

This procedure makes it possible to progressively enumerate every DAP introduced by the 

decoys and thus can help approximating the optimal allocation. We present the pseudo-

code for this scheme in Algorithm 1.   

https://www.codecogs.com/eqnedit.php?latex=x_m%20%5Cin%20%5Cmathbb%7BN%7D%2C%20%20%5Cquad%20%5Cforall%20%20m%20%5Cin%20M#0
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Line 5 computes the number of deployable decoys 𝑑̂𝑚  on each microservice defined as the 

available resources on the assigned node divided by the microservice resource 

consumption. This value is used to weight each microservices in the priority queue Q 

according to the number of APs going through them in lines  8-9. 

We allocate a decoy on the microservice with the highest priority in Q (i.e. the one in the first 

position) by updating the AG topology in line 15 and we recompute the available resources 

for decoys in line 16. We iteratively calculate the number of generated DAPs in lines  17-22. 

In detail, line 19 updates the BC values for other microservices in AG given the new decoy 

allocation, while line 20 takes into consideration the total DAPs, denoted as 𝜃𝑣𝑡
 , generated 
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by the interaction with the newly allocated decoy and the previously allocated ones. Lines 

23-24 clean the queue and recompute the number of deployable decoys. These steps are 

needed to discard microservices that cannot be cloned as decoys, thus they are no longer 

considered as possible candidates. Lines 26-28 weight the microservices priority according 

to the potential number of DAPs, expressed as the BC increment 𝛥𝑏(𝑖), that can be 

generated by allocating an additional decoy on the corresponding microservice. These steps 

guide the decoy allocation computation in the next iteration as the algorithm is incentivized 

to select microservices with the highest BC gain. Lines 31-33 insert the microservices into the 

queue with the updated priority only if the resources available are sufficient. The algorithm 

convergence is completed when Q is empty, which indicates that the resources reserved for 

the decoys are exhausted. The overall algorithm time complexity is polynomial and can be 

quantified as  𝑂(𝐷𝑀2), where D is the number of allocated decoys and M is the number of 

active microservices. 

 

CYBER DECEPTION IMPLEMENTATION 

We report hereafter activity diagrams of the three main phases managed in the cyber-

deception implementation. 

Setup phase 
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Cloning phase 

 

 

 

 

 

Manage threat phase 

 

 


